To solve the problem, we
must know the heat capacity of ice and water.
For Cp = 2090 J/kg C
H = mCpT
H = (10 kg) ( 2090 J/ Kg C)
( -23 C)
H = - 480700 J
For water Cp = 4180 j/kg C
H = (100 kg) ( 4180 J/kg C)
( 60 C)
<span>H = 2508000 J</span>
Answer:

Explanation:
Given data
Current I=82µA=82×10⁻⁶A
Resistance R=2.4×10⁵Ω
to find
Voltage
Solution
From Ohms law we know that:

Answer:
Explanation:
Given
mass of boy=36 kg
length of swing=3.5 m
Let T be the tension in the swing
At top point 
where v=velocity needed to complete circular path
Th-resold velocity is given by 

So apparent weight of boy will be zero at top when it travels with a velocity of 
To get the velocity at bottom conserve energy at Top and bottom
At top 
Energy at Bottom 
Comparing two as energy is conserved



Apparent weight at bottom is given by

Answer:
A. attracted to the negative terminal of the voltage source.
Explanation:
When an electron is displaced in a semiconductor, the hole that's left behind is
A. attracted to the negative terminal of the voltage source.
The electron leaving leaves a net + charge, which is attracted to the negative terminal.
Answer:
A. -2.16 * 10^(-5) N
B. 9 * 10^(-7) N
Explanation:
Parameters given:
Distance between their centres, r = 0.3 m
Charge in first sphere, Q1 = 12 * 10^(-9) C
Charge in second sphere, Q2 = -18 * 10^(-9) C
A. Electrostatic force exerted on one sphere by the other is:
F = (k * Q1 * Q2) / r²
F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²
F = -2.16 * 10^(-5) N
B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:
Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))
= - 6 * 10^(-9) C
Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C
Hence the electrostatic force between them is:
F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²
F = 9 * 10^(-7) N