Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.
In general, a scientific law<span> is the description of an observed phenomenon. It doesn't explain why the phenomenon exists or </span>what<span> causes it. The explanation of a phenomenon is called a </span>scientific theory<span>. It is a misconception that </span>theories<span> turn into </span>laws<span> with enough research
From Google.</span>
O2 mol O2 2 mil CO2 O1molO2
Answer:
grams O₂ = 134 grams
Explanation:
PV = nRT => n = PV/RT
P = 8.15atm
V = 12.2 Liters
R = 0.08206L·atm/mol·K
T = 16.0°C + 273 = 289K
n = (8.15atm)(12.2L)/(0.08206L·atm/mol·K)(289K) = 4.2 moles O₂
grams O₂ = 4.2 moles O₂ x 32g/mol = 134 grams O₂