Answer:
During a solar flare, the built up magnetic energy n the solar atmosphere is released at once. If a strong solar flare hits the earth, it is most possible that it will destroy the electronics. It is not expected to effect any human beings unless they are travelling towards the outer space are living at higher altitudes.
It can lead to skin can in case of extreme exposures.
I hope the answer is helpful.
Thanks for answering.
Apsidal precession—The major axis of Moon's elliptical orbit rotates by one complete revolution once every 8.85 years in the same direction as the Moon's rotation itself.
The substance is followed by H2O
To answer this lets first see how much 1 kg is equal to in cg.
1 kg = 100000 cg
Now lets multiply:-
100000 × 1.7 = <span>170000
</span>
So, 1.7 kg = <span>170000 cg
</span>
Hope I helped ya!!!
the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4