The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.
We want to relate the solubility of a gas with its partial pressure.
We can do so using Henry's law.
<h3>What does Henry's law state?</h3>
Henry's law states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid.
C = k × P
where,
- C is the concentration of a dissolved gas.
- k is the Henry's Law constant.
- P partial pressure of the gas.
The solubility of nitrogen gas is 1.90 mL/dL of blood at 1.00 atm.
Since the solvent is basically water, we can understand that the concentration of nitrogen gas is 1.90 mL/dL at 1.00 atm.
We can use this information to calculate Henry's Law constant.
k = C/P = (1.90 mL/dL)/1.00 atm = 1.90 mL/dL.atm
We want to calculate the solubility of nitrogen gas at a pressure of 7.00 atm.
We will use Henry's law.
C = k × P = (1.90 mL/dL.atm) × 7.00 atm = 13.3 mL/dL
The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.
Learn more about solubility here: brainly.com/question/11963573
Answer:
The options a and b are correct
Explanation:
This options provided to the question are the answers to the question. But for clarification. When the fat melts, the change of state that occurs here is from solid to liquid (which is called melting) while the change of state that occurs when the water evaporated is from liquid to gas (which is called evaporation).
The statement that best explains why xenon has a higher boiling point than neon is that xenon has more electrons than neon.
<h3>What are intermolecular forces?</h3>
The term intermolecular forces are the force that hold matter together in a particular state such as solid liquid or gas. The more the electrons present, the greater the polarizability and the greater dispersion forces at work.
Thus, the statement that best explains why xenon has a higher boiling point than neon is that xenon has more electrons than neon.
Learn more about intermolecular forces:brainly.com/question/9007693
#SPJ1