Answer:
1.5 m/s²
Explanation:
For the block to move, it must first overcome the static friction.
Fs = N μs
Fs = (45 N) (0.42)
Fs = 18.9 N
This is less than the 36 N applied, so the block will move. Since the block is moving, kinetic friction takes over. To find the block's acceleration, use Newton's second law:
∑F = ma
F − N μk = ma
36 N − (45 N) (0.65) = (45 N / 9.8 m/s²) a
6.75 N = 4.59 kg a
a = 1.47 m/s²
Rounded to two significant figures, the block's acceleration is 1.5 m/s².
Usually the coefficient of static friction is greater than the coefficient of kinetic friction. You might want to double check the problem statement, just to be sure.
The weight should be shared between the two string equally. Therefore, tension in each string, T is;
T = 120 N/2 = 60 N
The answer is a rainforest I’m pretty sure
Answer:
not sure. I'll try answering this later
Explanation:
I'm not sure. I'll try answering this later .
A) 1.55
The speed of light in a medium is given by:

where
is the speed of light in a vacuum
n is the refractive index of the material
In this problem, the speed of light in quartz is

So we can re-arrange the previous formula to find n, the index of refraction of quartz:

B) 550.3 nm
The relationship between the wavelength of the light in air and in quartz is

where
is the wavelenght in quartz
is the wavelength in air
n is the refractive index
For the light in this problem, we have

Therefore, we can re-arrange the equation to find
, the wavelength in air:
