The electrophilic bromination or chlorination of benzene requires Lewis acid along with the halogen.
<h3>
What is bromination of benzene?</h3>
The bromination or chlorination of benzene is an example of an electrophilic aromatic substitution reaction.
During the reaction, the bromine forms a sigma bond to the benzene ring, yielding an intermediate. Subsequently a a proton is removed from the intermediate to form a substituted benzene ring.
This reaction is achieved with the help of Lewis acid as catalysts.
Thus, the electrophilic bromination or chlorination of benzene requires Lewis acid along with the halogen.
Learn more about bromination of benzene here: brainly.com/question/26428023
The of the ocean floor would be the hardest to recover the cargo form is Abyssal Plain
Answer:

Explanation:
Hello,
In this case, by using the general gas law, that allows us to understand the pressure-volume-temperature relationship as shown below:

Thus, solving for the temperature at the end (considering absolute units of Kelvin), we obtain:

Best regards.
The volume of H₂ evolved at NTP=0.336 L
<h3>Further explanation</h3>
Reaction
Decomposition of NH₃
2NH₃ ⇒ N₂ + 3H₂
conservation mass : mass reactants=mass product
0.28 NH₃= 0.25 N₂ + 0.03 H₂
2 g H₂ = 22.4 L
so for 0.03 g :

I really hope that this helps. H-F because the difference in electronegativity is the greatest, about 1.9 on the Pauling scale. The term means which bond has the greatest polarity and is thus most similar to an ionic bond, which involves the transfer of an electron (in opposition to covalent bonds, which share electrons). It is H-F because out of all the atoms here bonded with H, ie hydrogen, F is the most electronegative which means it can pull the bonded electrons to itself more than can Cl, O, and N. <span>That means a stronger polarization of the electron cloud forming the bond with hydrogen and therefore a stronger ionic character.</span>