Answer:
atoms have no overall charge. this is because they contain equal numbers of positive protons and negative electrons
Answer:
Mass of aluminium in sample = 3.591 g ≅ 3.6 grams
Explanation:
Given that, A sample of aluminum absorbs 50.1 J of heat, upon which the temperature of the sample increases from 20.0°C to 35.5°C.
the specific heat of aluminum is 0.900 J/g- °C
The relation between heat absorbed and change in temperature is given by, Q = msΔT.
where Q = heat absorbed
m = mass of the substance
s = specific heat of substance
ΔT = change in temperature
Now, in our case, Q = 50.1 J ; s = 0.900 J/g- °C; ΔT= 35.5-20 = 15.5°C
⇒ m =
⇒ m = = 3.591 g ≅ 3.6 g
⇒ m ≅ 3.6 g
Answer: Group 1 would have the lowest electronegativity values.
Explanation:
Electronegativity is the power of an atom in a molecule to attract electrons. It is also synonymous with the oxidizing ability or non-metallic character of elements.
Generally, across a given period from left to right, electronegativity increases due to increasing nuclear charge and decreasing atomic radius ( or atomic size ). This is because there is a greater tendency for a smaller atom with higher nuclear attraction to attract electrons than a larger atom with a lower nuclear attraction due to the shielding effect of the nuclear attraction by the inner shell electrons on the outermost electrons in the larger atom.
Also, down a particular group, electronegativity generally decreases due to increasing atomic radius/size.
This is why metals are generally electropositive ( lose electrons ) and non-metals are electronegative ( gain electrons ) as they are both found more on the left and right sides of the periodic table respectively.
The chemical symbol that represents the element silver is B. Ag