Answer:
a) Δp = -2.0 kgm / s, b) Δp = -4 kg m / s
Explanation:
In this exercise the change in moment of a ball is asked in two different cases
a) clay ball, in this case the ball sticks to the door and we have an inelastic collision where the final velocity of the ball is zero
Δp = p_f - p₀
Δp = 0 - m v₀
Δp = - 0.100 20
Δp = -2.0 kgm / s
b) in this case we have a bouncing ball, this is an elastic collision, as the gate is fixed it can be considered an object of infinite mass, therefore the final speed of the ball has the same modulus of the initial velocity, but address would count
v_f = - v₀
Δp = p_f -p₀
Δp = m v_f - m v₀
Δp = m (v_f -v₀)
Δp = 0.100 (-20 - 20)
Δp = -4 kg m / s
Answer:
A. respiration.
Explanation:
Cellular respiration can be defined as a series of metabolic reactions that typically occur in cells so as to produce energy in the form of adenosine triphosphate (ATP). During cellular respiration, high energy intermediates are created that can then be oxidized to make adenosine triphosphate (ATP). Therefore, the intermediary products are produced at the glycolysis and citric acid cycle stage.
Additionally, mitochondria provides all the energy required in the cell by transforming energy forms through series of chemical reactions; breaking down of glucose into Adenosine Triphosphate (ATP) used for providing energy for cellular activities in the body of living organisms.
Basically, oxygen goes into the body of a living organism such as plants, humans and animals when they breathe while glucose is absorbed by the body when they eat.
Hence, the conversion of sugar to energy in the presence of oxygen is respiration.