Answer:
Explanation:
We know that , If the frictional force on a system is zero , then the total energy of a system will be conserved.
By using energy conservation
KE₁ + U₁ = KE₂ + U₂
KE₁=Kinetic energy at location 1
U₁ =Potential energy at location 1
KE₂=Kinetic energy at location 2
U₂=Potential energy at location 2
Therefore, Raymond is thinking in a right way.
The Beams And Joints That Hold It .
The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.
Answer:
T = 20.84°C
Explanation:
From the law of conservation of energy:
Heat Lost by Copper Block = Heat Gained by Aluminum Calorimeter + Heat Gained by Water

where,
= mass of copper = 227 g
= mass of water = 844 g
= mass of aluminum = 155 g
= specific heat capacity of calorimeter = 385 J/kg.°C
= specific heat capacity of water = 4200 J/kg.°C
= specific heat capacity of aluminum = 890 J/kg.°C
= change in temperature of copper = 283°C - T
= change in temperature of water = T - 14.6°C
= change in temperature of aluminum = T - 14.6°C
T = equilibrium temperature = ?
Therefore,

<u>T = 20.84°C</u>