Answer:
The mass percent of a solution of 7.6 grams sucrose in 83.4 grams of water is 8.351 %.
Explanation:
Given,
Mass of Sucrose = 7.6 grams
Mass of Water = 83.4 grams
In this solution, Sucrose is solute and water is the solvent.
Mass percent of a solution can be calculated using the formula,
Mass percent = (Mass of Solute/Mass of Solution)(100)
As sucrose is solute, mass of solute = 7.6 grams
As the solution contains both Sucrose and Water,
Mass of solution = 7.6 grams + 83.4 grams = 91 grams
Substituting the values, Mass percent = (7.6/91)(100) = 8.351 %.
Answer:
An emulsion is formed.
Explanation:
An association (emulsion) of two liquids is formed, in this case oil and vinegar, which when stirred, said mixture will separate.
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />
Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:

2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
![Qc=\frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=Qc%3D%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.
Ionic compounds<span> in solution react </span>faster<span> than molecular </span>compounds<span>. This </span>is <span>because </span>Ionic compounds<span> break apart to form free </span>ions. Therefore, there are no bonds<span> to break </span>so<span> the </span><span>reaction is fast</span>