1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marishachu [46]
3 years ago
14

1. A thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen lik

ely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 µm?
Engineering
1 answer:
mina [271]3 years ago
7 0

Answer:

fracture will occur as the value is less than E/10 (= 22.5)

Explanation:

If the maximum strength at tip Is greater than theoretical fracture strength value then fracture will occur and if the maximum strength is lower than theoretical fracture strength then no fracture will occur.

\sigma_m = 2\sigma_o [\frac{a}{\rho_t}]^{1/2}

=  2\times 750 (\frac{\frac{0.2mm}{2}}{0.001 mm}})^{1/2}

                 = 15 GPa

fracture will occur as the value is less than E/10 = 22.5

You might be interested in
A 1000-turn coil of wire 1.0 cm in diameter is in a magnetic field that increases from 0.10 T to 0.30 T in 10 ms. The axis of th
ddd [48]

emf generated by the coil is 1.57 V

Explanation:

Given details-

Number of turns of wire- 1000 turns

The diameter of the wire coil- 1 cm

Magnetic field (Initial)= 0.10 T

Magnetic Field (Final)=0.30 T

Time=10 ms

The orientation of the axis of the coil= parallel to the field.

We know that EMF of the coil is mathematically represented as –

E=N(ΔФ/Δt)

Where E= emf generated

ΔФ= change inmagnetic flux

Δt= change in time

N= no of turns*area of the coil

Substituting the values of the above variables

=1000*3.14*0.5*10-4

=.0785

E=0.0785(.2/10*10-3)

=1.57 V

Thus, the emf generated is 1.57 V

4 0
3 years ago
If you are a mechanical engineer answer these questions:
Natasha_Volkova [10]

Answer:

1. Yes, they are all necessary.

2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.

3 0
3 years ago
A full-adder is a combinational circuit that forms the arithmetic sum of three input bits.
Vinvika [58]
(b) correct it is false
5 0
3 years ago
Air is compressed in a reversible, isothermal, steady- flow process from 15 psia, 100°F to 100 psia. Calculate the work of compr
mixas84 [53]

Answer:

|W|=169.28 KJ/kg

ΔS = -0.544 KJ/Kg.K

Explanation:

Given that

T= 100°F

We know that

1 °F = 255.92 K

100°F = 310 .92 K

P _1= 15 psia

P _1= 100 psia

We know that work for isothermal process  

W=mRT\ln \dfrac{P_1}{P_2}

Lets take mass is 1 kg.

So work per unit mass

W=RT\ln \dfrac{P_1}{P_2}

We know that for air R=0.287KJ/kg.K

W=RT\ln \dfrac{P_1}{P_2}

W=0.287\times 310.92\ln \dfrac{15}{100}

W= - 169.28 KJ/kg

Negative sign indicates compression

|W|=169.28 KJ/kg

We know that change in entropy at constant volume

\Delta S=-R\ln \dfrac{P_2}{P_1}

\Delta S=-0.287\ln \dfrac{100}{15}

ΔS = -0.544 KJ/Kg.K

3 0
3 years ago
A 650-kN column load is supported on a 1.5 m square, 0.5 m deep spread footing. The soil below is a well-graded, normally consol
insens350 [35]

<u>Explanation:</u>

Determine the weight of footing

W_{f}=\gamma(L)(B)(D)

Where W_{f} is the weight of footing, γ is the unit weight of concrete,  L is the length of footing is the width of footing, and D is the depth of footing

Substitute 2 m \text { for } L, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 23.6 kN / m ^{3} for γ in the equation

\begin{aligned}W_{f} &=\left(23.6 kN / m ^{3}\right)(2 m )(1.5 m )(0.5 m ) \\&=35.4 kN\end{aligned}

Therefore, the weight of the footing is 35.4 kN

Determine the initial vertical effective stress.

\sigma_{z p}^{\prime}=\gamma(D+B)-u

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute 18 kN / m ^{3} \text { for } \gamma, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 0 for u in the equation

\begin{aligned}\sigma_{z p}^{\prime} &=\left(18 kN / m ^{3}\right)(1.5+0.5) m -0 \\&=36 kPa\end{aligned}

Therefore, the initial vertical stress is 36 kPa

Determine the vertical effective stress.

\sigma_{z D}^{\prime}=\gamma D

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute \(18 kN / m ^{3}\) for \(\gamma, 0.5 m\) for \(D\) and 0 for \(u\) in the equation.

\begin{aligned}\sigma_{z b}^{\prime} &=\left(18 kN / m ^{3}\right)(0.5 m )-0 \\&=9 kPa\end{aligned}

Therefore, the vertical stress at a depth below the ground surface is

9 kPa

Determine the influence factor at the midpoint of soil layer,

I_{e p}=0.5+0.1 \sqrt{\frac{q-\sigma_{s 0}^{\prime}}{\sigma_{z p}^{\prime}}}

Here I_{e p} is the influence factor at the midpoint of soil layer  \sigma_{z^{p}}^{\prime} is initial vertical stress, \sigma_{z^{p}}^{\prime} is vertical effective stress, and Q is bearing pressure

Substitute 36 kPa for \(\sigma_{z p}^{\prime}, 228.47\) kPa for \(q,\) and 9 kPa for \(\sigma_{z D}^{\prime}\) in the equation\begin{aligned}I_{\epsilon P} &=0.5+0.1 \sqrt{\frac{228.47 kPa -9 kPa }{36 kPa }} \\&=0.75\end{aligned}

Therefore the influence factor at the midpoint of the soil layer is 0.693

6 0
3 years ago
Other questions:
  • A vehicle experiences hard shifting. Technician A says that the bell housing may be misaligned. Technician B says that incorrect
    5·1 answer
  • Transcription machinery assembles at _______________.
    6·1 answer
  • The driver of a car traveling up a 2% grade at an initial speed V0 applied the brakes abruptly and the vehicle slid to a complet
    13·1 answer
  • Estimate the uncertainty in a 22 m/sec air velocity measurement using a Pitot tube at 20C. Assume the atmospheric pressure is 1
    7·1 answer
  • How can we calculate the speed of the output gear in a simple gear train? Explain with the help of an example.
    7·1 answer
  • You’re going to write a program that models the Littleton City Lotto (not a real Lotto game). The program is going to allow to u
    6·1 answer
  • Lagest organs of the human body
    6·2 answers
  • The production of carbon dioxide makes it unwise and unsafe to operate a tractor or any motor vehicle inside enclosed spaces suc
    13·1 answer
  • 2. How were scientists able to access a car's computer system?
    15·1 answer
  • Technician A says that a fully charged battery is less likely to freeze than a discharged battery. Technician B says that the st
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!