Answer:
rf
Explanation:
attached to the tube. The space between the fins is 3 mm, and thus there are 250 fins per meter length of the tube. Heat is transferred to the surrounding water at T= 43.06°C, with a heat transfer coefficient of 5300 W/m2 · °C. Determine the increase in heat transfer from the tube per meter of its length as a resu.
Sorry not sure about that
Answer:
True
Explanation:
An aircraft is subject to 3 primary rotations
1) About longitudinal axis known as rolling
2) About lateral axis known as known as pitching
3) About the vertical axis known as yawing
The rolling of the aircraft induces torsion in the body of the aircraft thus the fuselage structure should be capable of carrying torsion
Answer:
%Program prompts user to input vector
v = input('Enter the input vector: ');
%Program shows the value that user entered
fprintf('The input vector:\n ')
disp(v)
%Loop for checking all array elements
for i = 1 : length(v)
%check if the element is a positive number
if v(i) > 0
%double the element
v(i) = v(i) * 2;
%else the element is negative number.
else
%triple the element
v(i) = v(i) * 3;
end
end
%display the modified vector
fprintf('The modified vector:\n ')
disp(v)
Answer:
DIAMETER = 9.797 m
POWER = 
Explanation:
Given data:
circular windmill diamter D1 = 8m
v1 = 12 m/s
wind speed = 8 m/s
we know that specific volume is given as

where v is specific volume of air
considering air pressure is 100 kPa and temperature 20 degree celcius

v = 0.8409 m^3/ kg
from continuity equation





mass flow rate is given as


the power produced ![\dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]](https://tex.z-dn.net/?f=%5Cdot%20W%20%3D%20%5Cdot%20m%20%5Cfrac%7B%20V_1%5E2%20-%20V_2%5E2%7D%7B2%7D%20%3D%20717.3009%20%5B%5Cfrac%7B12%5E2%20-%208%5E2%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2Fs%5E2%7D%5D)
