1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
2 years ago
15

The oil system is:

Engineering
1 answer:
kirill [66]2 years ago
3 0

Answer:

From the main bearings, the oil passes through feed-holes into drilled passages in the crankshaft and on to the big-end bearings of the connecting rod.

You might be interested in
You want to find all files on your server that have either the SGID or SUID permission set. Which command should you use to obta
aalyn [17]

Answer:

For SGID you type this

$ find . -perm /4000

For SUID you type this

$ find . -perm /2000

Explanation:

Auxiliary file permissions, that are commonly referred to as “special permissions” in Linux are needed in order to easily find files which have SUID (Setuid) and SGID (Setgid) set.

After typing

$ find directory -perm /permissions

Then type the commands in the attachment below to obtain a list of these files with SGID and SUID.

3 0
3 years ago
Select the correct answer. Jennifer, a construction manager at a construction firm, has to hire several contractors and subcontr
Ymorist [56]
A. Quality management
7 0
3 years ago
Read 2 more answers
The 15-kg block A slides on the surface for which µk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 10-k
sammy [17]

Answer:

s_max = 0.8394m

Explanation:

From equilibrium of block, N = W = mg

Frictional force = μ_k•N = μ_k•mg

Since μ_k = 0.3,then F = 0.3mg

To determine the velocity of Block A just before collision, let's apply the principle of work and energy;

T1 + ΣU_1-2 = T2

So, (1/2)m_a•(v_ao)² - F•s =(1/2)m_a•(v_a1)²

Plugging in the relevant values to get ;

(1/2)•(15)•(10)² - (0.3•15•9.81•4) =(1/2)(15)•(v_a1)²

750 - 176.58 = 7.5(v_a1)²

v_a1 = 8.744 m/s

Using law of conservation of momentum;

Σ(m1v1) = Σ(m2v2)

Thus,

m_a•v_a1 + m_b•v_b1 = m_a•v_a2 + m_b•v_b2

Thus;

15(8.744) + 10(0) = 15(v_a2) + 10(v_b2)

Divide through by 5;

3(8.744) + 2(0) = 3(v_a2) + 2(v_b2)

Thus,

3(v_a2) + 2(v_b2) = 26.232 - - - (eq1)

Coefficient of restitution has a formula;

e = (v_b2 - v_a2)/(v_a1 - v_b1)

From the question, e = 0.6.

Thus;

0.6 = (v_b2 - v_a2)/(8.744 - 0)

0.6 x 8.744 = (v_b2 - v_a2)

(v_b2 - v_a2) = 5.246 - - - (eq2)

Solving eq(1) and 2 simultaneously, we have;

v_b2 = 8.394 m/s

v_a2 = 3.148 m/s

Now, to find maximum compression, let's apply conservation of energy on block B;

T1 + V1 = T2 + V2

Thus,

(1/2)m_b•(v_b2)² + (1/2)k(s_1)² = (1/2)m_b•(v_b'2)² + (1/2)k(s_max)²

(1/2)10•(8.394)² + (1/2)1000(0)² = (1/2)10•(0)² + (1/2)(1000)(s_max)²

500(s_max)² = 352.29618

(s_max)² = 352.29618/500

(s_max)² = 0.7046

s_max = 0.8394m

8 0
2 years ago
A gas in a piston–cylinder assembly undergoes a compression process for which the relation between pressure and volume is given
viktelen [127]

Answer:

A.) P = 2bar, W = - 12kJ

B.) P = 0.8 bar, W = - 7.3 kJ

C.) P = 0.608 bar, W = - 6.4kJ

Explanation: Given that the relation between pressure and volume is

PV^n = constant.

That is, P1V1^n = P2V2^n

P1 = P2 × ( V2/V1 )^n

If the initial volume V1 = 0.1 m3,

the final volume V2 = 0.04 m3, and

the final pressure P2 = 2 bar. 

A.) When n = 0

Substitute all the parameters into the formula

(V2/V1)^0 = 1

Therefore, P2 = P1 = 2 bar

Work = ∫ PdV = constant × dV

Work = 2 × 10^5 × [ 0.04 - 0.1 ]

Work = 200000 × - 0.06

Work = - 12000J

Work = - 12 kJ

B.) When n = 1

P1 = 2 × (0.04/0.1)^1

P1 = 2 × 0.4 = 0.8 bar

Work = ∫ PdV = constant × ∫dV/V

Work = P1V1 × ln ( V2/V1 )

Work = 0.8 ×10^5 × 0.1 × ln 0.4

Work = - 7330.3J

Work = -7.33 kJ

C.) When n = 1.3

P1 = 2 × (0.04/0.1)^1.3

P1 = 0.6077 bar

Work = ∫ PdV

Work = (P2V2 - P1V1)/ ( 1 - 1.3 )

Work = (2×10^5×0.04) - (0.608 10^5×0.1)/ ( 1 - 1.3 )

Work = (8000 - 6080)/ -0.3

Work = -1920/0.3

Work = -6400 J

Work = -6.4 kJ

5 0
3 years ago
A hot air balloon is used as an air-vehicle to carry passengers. It is assumed that this balloon is sealed and has a spherical s
monitta

Answer:

a. \dfrac{D_{1}}{ D_{2}}  =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n} which is constant therefore, n = constant

b. The temperature at the end of the process is 109.6°C

c. The work done by the balloon boundaries = 10.81 MJ

The work done on the surrounding atmospheric air = 10.6 MJ

Explanation:

p₁ = 100 kPa

T₁ = 27°C

D₁ = 10 m

v₂ = 1.2 × v₁

p ∝ α·D

α = Constant

v_1 = \dfrac{4}{3} \times  \pi \times r^3

\therefore v_1 = \dfrac{4}{3} \times  \pi \times  \left (\dfrac{10}{2}  \right )^3 = 523.6 \ m^3

v₂ = 1.2 × v₁ = 1.2 × 523.6 = 628.32 m³

Therefore, D₂ = 10.63 m

We check the following relation for a polytropic process;

\dfrac{p_{1}}{p_{2}} = \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} = \left (\dfrac{T_{1}}{T_{2}}   \right )^{\dfrac{n}{n-1}}

We have;

\dfrac{\alpha \times D_{1}}{\alpha \times D_{2}} = \left (\dfrac{ \dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_2}{2}  \right )^3}{\dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_1}{2}  \right )^3}   \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

\dfrac{D_{1}}{ D_{2}} = \left (\dfrac{   \left{D_2}  }{ {D_1}}   \right )^{3\times n} =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n}

\dfrac{ D_{1}}{ D_{2}} = \left ( 1.2  \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

log  \left (\dfrac{D_{1}}{ D_{2}}\right )  =  -3\times n \times log\left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )

n = -1/3

Therefore, the relation, pVⁿ = Constant

b. The temperature T₂ is found as follows;

\left (\dfrac{628.32 }{523.6}   \right )^{-\dfrac{1}{3} } = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{-\dfrac{1}{3}}{-\dfrac{1}{3}-1}} = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{1}{4}}

T₂ = 300.15/0.784 = 382.75 K = 109.6°C

c. W_{pdv} = \dfrac{p_1 \times v_1 -p_2 \times v_2 }{n-1}

p_2 = \dfrac{p_{1}}{ \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} } =  \dfrac{100\times 10^3}{ \left (1.2) \right  ^{-\dfrac{1}{3} } }

p₂ =  100000/0.941 = 106.265 kPa

W_{pdv} = \dfrac{100 \times 10^3 \times 523.6 -106.265 \times 10^3  \times 628.32 }{-\dfrac{1}{3} -1} = 10806697.1433 \ J

The work done by the balloon boundaries = 10.81 MJ

Work done against atmospheric pressure, Pₐ, is given by the relation;

Pₐ × (V₂ - V₁) = 1.01×10⁵×(628.32 - 523.6) = 10576695.3 J

The work done on the surrounding atmospheric air = 10.6 MJ

4 0
3 years ago
Other questions:
  • First step in solving frames in to solve support reactions when looking at the frame as a whole. a)- True b)-False
    9·1 answer
  • The phrase "positive to positive, negative to ground" is correct when jump starting a car.
    9·1 answer
  • If a building is too humid, what harmful substance may be stored there?
    13·2 answers
  • Technician A says that the first step in diagnosing engine condition is to perform a thorough visual inspection. Technician B sa
    8·1 answer
  • Compute the estimated actual endurance limit for SAE 4130 WQT 1300 steel bar with a rectangular cross section of 20.0 mm by 60 m
    11·1 answer
  • In your Reader/Writer Notebook, write a short first-person narrative from the perspective of the bank clerk, describing her phys
    12·1 answer
  • Why would Chris most likely conclude that he should seek help? A. He feels in control of his emotions even though people annoy h
    15·2 answers
  • What is the line called that has the red arrow pointing to it in the attached picture?
    6·1 answer
  • Which rules of the road apply to people riding bicycles, under Illinois law? *
    9·1 answer
  • ░░░░░░░░░░░░░░░░░░░▄▀▐░░░▌
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!