Answer:
1.42 KJ
Explanation:
solution:
power in beginning
=(1.5 V).(9×
A)
= 13.5 mW
after continuous 37 hours it drops to
=(1 V).(9×
A)
=9 mW
When the voltage will drop energy will not remain the same but the voltage drop will always remain same if the voltage was drop to for example from 5 V to 4.5 V the drop will remain the same.
37 hours= 37.60.60
=133200 s
w=(9×
A×133200 )+
=1.42 KJ
<em>NOTE:</em>
There maybe a calculation error but the method is correct.
Answer:
P2 = 3.9 MPa
Explanation:
Given that
T₁ = 290 K
P₁ = 95 KPa
Power P = 5.5 KW
mass flow rate = 0.01 kg/s
solution
with the help of table A5
here air specific heat and adiabatic exponent is
Cp = 1.004 kJ/kg K
and k = 1.4
so
work rate will be
W = m × Cp × (T2 - T1) ..........................1
here T2 = W ÷ ( m × Cp) + T1
so T2 = 5.5 ÷ ( 0.001 × 1.004 ) + 290
T2 = 838 k
so final pressure will be here
P2 = P1 ×
..............2
P2 = 95 × 
P2 = 3.9 MPa
Answer:b
Explanation:
We know power delivered by Pump is

where
=Density of fluid
=Flow rate
=acceleration due to gravity
=Change in Elevation
If
is increased by 4 time then


So power increases by four times.
Answer:
d. To Murrow, Hitler was a threat to all of civilization
Explanation:
For Murrow, Hitler's rise was a serious problem and a major threat to the entire civilization. For this reason, he believed that covering news about Hitler's advance and the battles of Nazi Germany was essential, even if the American population did not see Hitler as a threat and the European population, believed that these reprotations were only a way to denigrate the image of the continent to the world.
For Murrow reporting on Hitler's actions was as important as reporting on natural disasters.
Answer:
0.25 J/K
Explanation:
Given data in given question
heat (Q) = 100 J
temperature (T) = 400 K
to find out
the change in entropy of the given system
Solution
we use the entropy change equation here i.e
ΔS = ΔQ / T ...................a
Now we put the value of heat (Q) and Temperature (T) in equation a
ΔS is the entropy change, Q is heat and T is the temperature,
so that
ΔS = 100/400 J/K
ΔS = 0.25 J/K