1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
3 years ago
12

A ball of mass m = 0.1kg is connected to a rope of length L = 1.2 m. The ball is swung around in a vertical circle and ball is m

oving around the circle at a constant speed v (uniform circular motion). The tension on the rope at the top of the string is Ttop = 2 mg = 1.96 N, where g = 9.8 m/sec2 is the acceleration due to gravity.
Problem 1: What is v, the speed of the ball?
What is Tbottom, the tension on the rope at the bottom of the circle?

Physics
1 answer:
bonufazy [111]3 years ago
4 0

Answer:

The speed of the ball is approximately 5.94 m/s

The Tension of the string at the bottom is 3.92 N

Explanation:

We need to find the speed of the ball, which is constant due to the fact that we are in a uniform circular motion. Notice as well that the speed of the ball is the magnitude of the tangential velocity "v_t" (vector that changes direction with the position of the ball but doesn't change magnitude in this case).

We analyze first the top position of the circular motion, for which information on the tension of the string is given (see first free body diagram in the attached picture).  We are told that the tension at the top of the movement equals twice the force of gravity on the ball's mass: T - 2*m*g = 1.96 N. And we know that there are two forces acting on the ball in that position (illustrated with the green arrows pointing down): one is the ball's weight due to gravity, and the other is the string's tension. So we can write Newton's second law for this situation:

F_{net}= T_{top}+W\\F_{net}=2\,W+W\\F_{net}=3\,W\\F_{net}=2.94 N\\

Newton's second law tells us that the net force should equal the mass of the ball times its acceleration (F = m * a), and in this motion, the acceleration is the centripetal acceleration. Therefore weuse this equation to solve for the centripetal acceleration of the ball:

m\,a_c=2.94\,N\\a_c=\frac{2.94\,N}{0.1\,kg} \\a_c=29.4\,\frac{m}{s^2}

The centripetal acceleration is defined as the square of the tangential velocity divided the radius of the circular motion. Then we use it to derive the magnitude of the tangential velocity (speed of the ball):

a_c=\frac{v^2}{R} \\29.4\,\frac{m}{s^2} =\frac{v_t^2}{R} \\v_t^2=29.4\,(1.2)\,\frac{m^2}{s^2} \\v_t=5.94\,\frac{m}{s}

So we have found the speed of the ball.

Now we focus our attention to the bottom of the motion, and again use Newton's second law to solve for the string tension (see second free body diagram in the attached picture).

We notice here that the tension and the weight are acting in opposite directions, so we have such into account when finding the net force on the ball, and then solve for the tension knowing the value of the centripetal acceleration (recall that the magnitude of the tangential velocity is the same because of the uniform circular motion).

F_{net}= T_{bot}-W\\m\,a_c=T_{bot}-0.98\,N\\2.94\,N=T_{bot}-0.98\,N\\T_{bot}=(2.94+0.98)N\\T_{bot}=3.92\,N

You might be interested in
James Bond is trying to escape his enemy on a speedboat but
SVEN [57.7K]

Answer:

100 m/s

Explanation:

Mass the mass of Bond's boat is m₁. His enemy's boat is twice the mass of Bond's i.e. m₂ = 2 m₁

Initial speed of Bond's boat is 0 as it won't start and remains stationary in the water. The initial speed of enemy's boat is 50 m/s. After the collision, enemy boat is  completely stationary. Let v₁ is speed of bond's boat.

It is the concept of the conservation of momentum. It remains conserved. So,

m_1u_1+m_2u_2=m_1v_1+m_2v_2

Putting all the values, we get :

0+(2m_1)50=m_1v_1+(2m_2)(0)\\\\100m_1=m_1v_1\\\\v_1=100\ m/s

So, Bond's boat is moving with a speed of 100 m/s after the collision.

3 0
3 years ago
Explain why the life cycle of a star can be compared to the life style of a human
Vladimir79 [104]
A star is born when clouds of dust and elements are gathered together in a certain space due to gravity, more and more mass and therefore pressure builds. When the pressure becomes enough to overcome the electronic repulsive force between two hydrogen nuclei, they are forced together and massive amounts of energy are given off forming helium atoms. This energy is then used to fuse other nuclei together. This could be compared to the way human life starts, where instead of 2 nuclei joining together to start a life cycle, two gametes, or sex cells are joined together. Also at the start of both a star and persons life, we are weak and we gain strength until we reach the height of our existence, then humans slowly become less efficient at doing what they do until eventually they cannot sustain themselves any further.
6 0
3 years ago
What is refraction?
Damm [24]
B- light bends as it passes through an object ( a would be reflect)
4 0
3 years ago
Can someone help me?
Cloud [144]

What do we know that might help here ?

-- Temperature of a gas is actually the average kinetic energy of its molecules.

-- When something moves faster, its kinetic energy increases.

Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.

That's exactly what Graph #1 shows.

How about the other graphs ?

-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases.  That can't be right.

-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all.  That can't be right.

-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN.  That can't be right.  

--

4 0
3 years ago
Calculate the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
Harrizon [31]

1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.

The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().

The Rydberg formula is used to determine the energy change.

Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.

aaΔE=R(1n2f−1n2i) aa

were

2.17810-18lJ is the Rydberg constant.

The initial and ultimate energy levels are ni and nf.

As a change of pace from

n=5 to n=3 gives us

ΔE

=2.178×10-18lJ (132−152)

=2.178×10-18lJ (19−125)

=2.178×10-18lJ×25 - 9/25×9

=2.178×10-18lJ×16/225

=1.549×10-19lJ

Learn more about Rydberg formula here-

brainly.com/question/13185515

#SPJ4

8 0
2 years ago
Other questions:
  • If we increase the distance traveled when doing work , and keep all other factors the same, what will happen?
    6·2 answers
  • What force controls the isostatic adjustment of Earth’s crust?
    10·2 answers
  • A tennis ball traveling horizontally at a speed of 40 m/s hits a wall and rebounds in the opposite direction. The time Interval
    14·1 answer
  • A 4.45 g object moving to the right at 18.6 cm/s makes an elastic head-on collision with an 8.9 g object that is initially at re
    15·1 answer
  • An object is thrown vertically up and attains an upward velocity of 34 m/s when it reaches one fourth of its maximum height abov
    10·1 answer
  • NEED HELP THIS IS DUE IN 30 MINUTES
    10·1 answer
  • How many distillation are there?​
    13·1 answer
  • The table below shows the speed of sound waves from musical sound sources at 20°C. Which conclusion can be made based on the inf
    15·2 answers
  • PLEASE HELP ASAP!! DUE IN AN HOUR :’))!!
    14·1 answer
  • Name and Title:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!