The magnet needs to be held above the coils of wires
Potential energy at top:
PE = mgh
PE = 40 x 9.81 x 12
P.E = 4,708.8 J
Kinetic energy at bottom:
KE = 1/2 mv²
KE = 1/2 x 40 x 10²
K.E = 2,000 J
P.E = K.E + Frictional losses
Frictional losses = 4708 - 2000
Frictional losses = 2708 J
The answer is D.
It has acceleration while it's in your hand and you're in the process of flinging it, but we don't know how much.
It has acceleration ... pretty big ... during the short time between hitting the first blade of grass and coming to rest in the dirt, at the end of its trip.
From the time it leaves your hand until it hits the grass on the way down, its has the same constant, continuous acceleration ... 9.8 m/s^2 downward, the acceleration of gravity.
The greatest acceleration is probably at the end of the trip, after it hits the grass, and its speed drops to zero in a tiny fraction of a second.
Remember opposites attract and same charges repel each other.
Object A= negatively charged.
Object A and B attract so B must be positively charged.
Object B and C repel so because B is positively charged C must also be positively charged.
Object C and D attract and because C is positively charged, D must be negatively charged.
We know the formula for density = Mass/ volume
So Mass, M = Volume * Density
Volume = 3.5 L= 0.0035
Density = 1.50 g/ml = 1500 
Mass, M = 0.0035*1500 = 5.25 kg
So mass of liquid having density 1.50 g/ml and volume 3.5 liters is 5.25 kg.