The answer would be letter A - bromine. Bromine <span>(B<span>r2</span>)</span>
has only london dispersion forces and are weak, but it's large electron
cloud allows for transient polarization creating dipole moments that
strengthen their interaction.
Answer:
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
Explanation:
Step 1: Data given
A sample of sulfur hexafluoride gas occupies a volume of 5.10 L
Temperature = 198 °C = 471 K
The volume will be reduced to 2.50 L
Step 2 Calculate the new temperature via Charles' law
V1/T2 = V2/T2
⇒with V1 = the initial volume of sulfur hexafluoride gas = 5.10 L
⇒with T1 = the initial temperature of sulfur hexafluoride gas = 471 K
⇒with V2 = the reduced volume of the gas = 2.50 L
⇒with T2 = the new temperature = TO BE DETERMINED
5.10 L / 471 K = 2.50 L / T2
T2 = 2.50 L / (5.10 L / 471 K)
T2 = 230.9 K = -42.1
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
Answer:
Döbereiner singled out triads of the elements lithium, sodium and potassium as well as chlorine, bromine and iodine. He noticed that if the three members of a triad were ordered according to their atomic weights, the properties of the middle element fell in between those of the first and third elements.
Explanation:
We will use this formlula: Mass in grams = Number of moles x Molecular mass of 1 mole.
Since, we know the avagadro number is 6.02 x 10²³, we only have two unknown values left which are the molecular mass of CH3OH and its mole.
Molecular Mass: C = 12, H= 1, O = 16, since we have C=12, H4 = 4, O = 16, we will add them up: 12 + 4 + 16 =32
We know that one mole of anything = 6.02 x 10²³.
So we will use this formula to find the mole of methanol: Number of moles = Number of molecules / Avagadro number
Number of moles of CH3OH = (9.79 x 10^24)/6.02 x 10²³) = 16.263 moles.
Now we know that the molecular mass = 32 and the mole is = 16.263.
Now we can find its mass by using this formula: <span>Mass in grams = Number of moles x Molecular mass of 1 mole.
</span>
Mass in grams = 16.263 x 32 = 520g
To find the empirical formula you would first need to find the moles of each element:
58.8g/ 12.0g = 4.9 mol C
9.9g/ 1.0g = 9.9 mol H
31.4g/ 16.0g = 1.96 O
Then you divide by the smallest number of moles of each:
4.9/1.96 = 2.5
9.9/1.96 = 6
1.96/1.96 = 1
Since there is 2.5, you find the least number that makes each moles a whole number which is 2.
So the empirical formula is C5H12O2.