1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
3 years ago
10

Arbeitsauftrag 2

Physics
1 answer:
kramer3 years ago
8 0

Explanation:

<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>

At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.

At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.

At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.

At 4, the pendulum again gains potential energy as it climbs back up,  Again how much of each forms of energy it has depends on its height.

At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.

Hope this helps :)

You might be interested in
single goose sounds a loud warning when an intruder enters the farmyard. Some distance from the goose, you measure the sound lev
Goryan [66]

Answer:

The sound level of the 26 geese is  Z_{26}= 96.15 dB

Explanation:

From the question we are told that

    The  sound level is Z_1 =  81.0 \ dB

     The number of geese is N = 26

Generally the intensity level of sound is mathematically represented as

        The intensity of sound level in dB  for one  goose is mathematically represented as

                       Z_1 = 10 log [\frac{I}{I_O} ]

Where I_o is the  threshold level of intensity with value  I_o = 1*10^{-12} \  W/m^2

            I is the intensity for one goose in W/m^2

For 26 geese the intensity would be  

          I_{26} = 26 * I

   Then  the intensity of 26 geese in dB is  

              Z_{26} = 10 log[\frac{26 I }{I_o} ]

               Z_{26} = 10 log (\ \ 26 *  [\frac{ I }{I_o} ]\ \ )

               Z_{26} = 10 log (\ \ 26  \ \ ) *   (\ \  10 log [\frac{ I }{I_o} ]\ \ )

 From the law of logarithm we have that

              Z_{26} = 10 log 26 +  10 log [\frac{I}{I_0} ]

                    = 14.15 + 82

                    Z_{26}= 96.15 dB

               

               

           

4 0
3 years ago
If you wanted to know the location of a vehicle that ran out of gas after taking a zigzag route through the city, which quantity
Papessa [141]

Explanation:

the vehicles displacement, since displacement deals with position

8 0
3 years ago
An unruly student with a spitwad (a lump of wet paper) of mass 20 g in his pocket finds himself in the school library where ther
jeka94

Answer:

T = 188.5 s, correct is  C

Explanation:

This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved

         

initial instant. Before the crash

        L₀ = r m v₀ + I₀ w₀

the angular speed of the fan is zero w₀ = 0

final instant. After the crash

        L_f = I₀ w + m r v

        L₀ = L_f

        m r v₀ = I₀ w + m r v

angular and linear velocity are related

        v = r w

        w = v / r

        m r v₀ = I₀ v / r + m r v

         m r v₀ = (I₀ / r + mr) v

       v = \frac{m}{\frac{I_o}{r}  +mr} \ r v_o

let's calculate

       v = \frac{0.020}{\frac{1.4}{0.6  } + 0.020 \ 0.6  } \ 0.6 \ 4

       v = \frac{0.020}{2.345} \ 2.4

       v = 0.02 m / s

         

To calculate the time of a complete revolution we can use the kinematics relations of uniform motion

        v = x / T

         T = x / v

the distance of a circle with radius r = 0.6 m

         x = 2π r

we substitute

         T = 2π r / v

let's calculate

         T = 2π 0.6/0.02

         T = 188.5 s

reduce

         t = 188.5 s ( 1 min/60 s) = 3.13 min

correct is  C

6 0
3 years ago
A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most
Oxana [17]

Answer:

A)  I_{total} = 1.44 kg m², B) moment of inertia must increase

Explanation:

The moment of inertia is defined by

     I = ∫ r² dm

For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is

      I = ½ m R²

A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is

    I = I_{cm} + m D²

Let's apply these equations to our case

The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms

      I_{total}=I_{body} + 2 I_{arm}

       I_{body} = ½ M R²

The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body

       M = 7/8 m total

       M = 7/8 64

       M = 56 kg

The mass of the arms is

      m’= 1/8 m total

      m’= 1/8 64

      m’= 8 kg

As it has two arms the mass of each arm is half

     m = ½ m ’

     m = 4 kg

The arms are very thin, we will approximate them as a particle

    I_{arm} = M D²

Let's write the equation

     I_{total} = ½ M R² + 2 (m D²)

Let's calculate

    I_{total} = ½ 56 0.20² + 2 4 0.20²

    I_{total} = 1.12 + 0.32

    I_{total} = 1.44 kg m²

b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase

6 0
3 years ago
A charged object is suspended motionless in the air by the gravitational force pulling it down and an electric force pushing it
Savatey [412]

The charge of the object must be 1.11 \times e^{-5} \text { coulomb }

Answer: Option C

<u>Explanation:</u>

Suppose an electric charge can be represented by the symbol Q. This electric charge generates an electric field; Because Q is the source of the electric field, we call this as source charge. The electric field strength of the source charge can be measured with any other charge anywhere in the area. The test charges used to test the field strength.

Its quantity indicated by the symbol q. In the electric field, q exerts an electric, either attractive or repulsive force. As usual, this force is indicated by the symbol F. The electric field’s magnitude is simply defined as the force per charge (q) on Q.

         Electric field, E=\frac{\text { Force }(F)}{q}

Here, given E = 4500 N/C and F = 0.05 N.

We need to find charge of the object (q)

By substituting the given values, we get

      q=\frac{F}{E}=\frac{0.05 N}{4500 \mathrm{N} / \mathrm{c}}=1.11 \times e^{-5} \text { coulomb }

6 0
3 years ago
Other questions:
  • Please help. Due today. Will give brainliest, thanks, and rate. Thanks in advance:)
    8·2 answers
  • What brings greater concentration of dissolved nutrients to ocean surface
    6·2 answers
  • When a liquid is introduced into the air space between the lens and the plate in a Newton's-rings apparatus, the diameter of the
    15·1 answer
  • Which type of central heating system is often used when heating many buildings from a central location?
    7·2 answers
  • A 60.7 kg astronaut is floating in space. She takes her 3.1 kg astronaut drill from her toolbelt and throws it to the right. It
    13·1 answer
  • Points A, B, and C are at the corners of an equilateral triangle of side 8 m. Equal positive charges of 4 mu or micro CC are at
    11·1 answer
  • Questions 14 out of 20
    15·1 answer
  • The gravitational force between two objects with masses, m1 and m2, separated by a distance "r" is given by F = (Gm1m2)/ r2, whe
    5·1 answer
  • QUICK HELP PLEASE!
    13·1 answer
  • When starting a foot race, a 64 kilogram sprinter exerts an average force of 693 newtons backward on the ground for 0.59 seconds
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!