1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
10

Use the overall heat-transfer resistance presented by the external air and the glass itself to determine the heat flux in W/m2 i

f the internal glass surface is maintained at the dew point.
Engineering
1 answer:
VLD [36.1K]3 years ago
8 0

Answer:

It does

Explanation:

You might be interested in
A driver is traveling at 90 km/h down a 3% grade on good, wet pavement. An accident
Paul [167]

Answer:

0.35

Explanation:

We resolve the component of the weight of the car along and perpendicular to the grade. We have mgsinФ and mgcosФ where Ф = angle of grade.

Now, the frictional force f = μN = μmgcosФ where μ = coefficient of friction

So, the net force along the grade is F = mgsinФ - μmgcosФ.

The work done by this force moving a distance, d along the grade is

W = (mgsinФ - μmgcosФ)d

This work equals the change in kinetic energy of the car. So ΔK = 1/2m(v₂² - v₁²) = W = (mgsinФ - μmgcosФ)d

1/2m(v₂² - v₁²) = (mgsinФ - μmgcosФ)d

1/2(v₂² - v₁²) = (gsinФ - μgcosФ)d

(v₂² - v₁²)/2d = (gsinФ - μgcosФ)

dividing through by gcosФ, we have

(v₂² - v₁²)/2dgcosФ = (gsinФ/gcosФ) - μgcosФ/gcosФ

(v₂² - v₁²)/2dgcosФ = tanФ -  μ

μ = tanФ - (v₂² - v₁²)/2dgcosФ

given that tanФ = 3% = 3/100 and 1 + tan²Ф = 1/cos²Ф, cosФ = 1/(√1 + tan²Ф) = 1/(√1 + (3/100)²) = 1/(√1 + (9/10000)) = 1/(√10000 + 9/10000) = 1/√(10009/10000) = 100/√10009 = 100/100.05 = 0.9995.

Also, given that v₁ = 90 km/h = 90 × 1000/3600 m/s = 25 m/s and v₂ = 45 km/h = 45 × 1000/3600 m/s = 12.5 m/s, d = 75 m and g = 9.8 m/s².

So, substituting the values of the variables into the equation, we have

μ = tanФ - (v₂² - v₁²)/2dgcosФ

μ = 3/100 - ((12.5 m/s)² - (25 m/s)²)/(2 × 75 m × 9.8 m/s² × 0.9995)

μ = 3/100 - ((156.25 m/s)² - (625 m/s)²)/1,469.265 m²/s²

μ = 3/100 - (-468.75 m²/s²)/1,469.265 m²/s²

μ = 3/100 + 468.75 m²/s²/1,469.265 m²/s²

μ = 0.03 + 0.32

μ = 0.35

So, theoretical friction  coefficient is 0.35

4 0
3 years ago
Which of the following is NOT a line used on blueprints?
jonny [76]

Answer: Photo lines

Explanation: made more sense

4 0
3 years ago
Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 k
In-s [12.5K]

Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pm

<em><u>p</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>,</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

3 0
3 years ago
ممكن الحل ............
Roman55 [17]

Answer:

i dont understand

Explanation:

4 0
3 years ago
Calculate the wire pressure for a round copper bar with an original cross-sectional area of 12.56 mm2 to a 30% reduction of area
dybincka [34]

Answer:153.76 MPa

Explanation:

Initial Area\left ( A_0\right )=12.56 mm^2

Final Area\left ( A_f\right )=0.7\times 12.56 mm^2=8.792 mm^2

Die angle=30^{\circ}

\alpha =\frac{30}{2}=15^{\circ}

\mu =0.08

Yield stress\left ( \sigma _y \right )=350 MPa

B=\mu cot\left ( \aplha\right )=0.2985

\sigma _{pressure}=\sigma _y\left [\frac{1+B}{B}\right ]\left [ 1-\frac{A_f}{A_0}\right ]^B

\sigma _{pressure}=350\left [\frac{1+0.2985}{0.2985}\right ]\left [ 1-\frac{8.792}{12.56}\right ]^{0.2985}

\sigma _{pressure}=153.76 MPa

8 0
3 years ago
Other questions:
  • Is CO, an air pollutant? How does it differ from other emissions resulting from the combustion of fossil fuels?
    7·1 answer
  • True or false? Don't break or crush mercury-containing lamps because mercury powder may be released.
    8·1 answer
  • The function of a circuit breaker is to _____.
    12·1 answer
  • Consider an InSb NW with ballistic mean free path of 150nm. Calculate the current through a 250nm long InSb NW when a 100mV bias
    6·1 answer
  • What is the base unit in standard measurement
    13·2 answers
  • Consider the experiment of Problem 1.27, in which a frictionless puck is sliding straight across a rotating turntable through th
    10·1 answer
  • A private plane pilot is what kind of individual transportation position? professional level mid-level entry-level EPA-certified
    9·1 answer
  • A small distiller evaporates 10 L of water per half hour. Alloy tubing exposed to the air serves a condenser to recover steam. T
    14·1 answer
  • If an elevator repairer observes that cables begin to fray after 15 years, what process might he or she use to create a maintena
    11·1 answer
  • When was solar power envold ​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!