- the last one ‘design meets all the criteria...’
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in