Answer:
A
Explanation:
All of the frictions are the same, but weight always goes straight down so it can only be A or B. Since they are going down a slope, then the normal force must be sloped. A is the only one out of A and B with a sloped normal force, so it has to be A
Answer:
<em>The force is now 9 times the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrostatic force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Coulomb's formula is:

Where:

q1, q2 = the particles' charge
d= The distance between the particles
Suppose the distance is reduced to d'=d/3, the new force F' is:




The force is now 9 times the original force
Answer:
The mass of the ice block is equal to 70.15 kg
Explanation:
The data for this exercise are as follows:
F=90 N
insignificant friction force
x=13 m
t=4.5 s
m=?
applying the equation of rectilinear motion we have:
x = xo + vot + at^2/2
where xo = initial distance =0
vo=initial velocity = 0
a is the acceleration
therefore the equation is:
x = at^2/2
Clearing a:
a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2
we use Newton's second law to calculate the mass of the ice block:
F=ma
m=F/a = 90/1.283=70.15 kg
Along plate edges, at points where oceanic or continental plates meet ot at the edges of the plates