Answer:
Magnetic field, 
Explanation:
It is given that,
Number of turns, N = 320
Radius of the coil, r = 6 cm = 0.06 m
The distance from the center of one coil to the electron beam is 3 cm, x = 3 cm = 0.03 m
Current flowing through the coils, I = 0.5 A
We need to find the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils. The magnetic field midway between the coils is given by :


B = 0.00239 T
or

So, the magnitude of the magnetic field at a location on the axis of the coils, midway between the coils is
. Hence, this is the required solution.
Answer:the maximum Hall voltage across the strip= 0.00168 V.
Explanation:
The Hall Voltage is calculated using
Vh= B x v x w
Where
B is the magnitude of the magnetic field, 5.6 T
v is the speed/ velocity of the strip, = 25 cm/s to m/s becomes 25/100=0.25m/s
and w is the width of the strip= 1.2 mm to meters becomes 1.2 mm /1000= 0.0012m
Solving
Vh= 5.6T x 0.25m/s x 0.0012m
=0.00168T.m²/s
=0.00168Wb/s
=0.00168V
Therefore, the maximum Hall voltage across the strip=0.00168V
Answer:
B. Geosphere
A. Biosphere
A. Atmosphere
Explanation:
Volcanic eruptions occurs within the Geosphere. The geosphere is the rock solid earth make up of rocks that extends into the deep interior.
Magma formed deep within the crust rises to elevated parts and finally erupts as lava on the surface. When they cool, they solidify to form volcanic rocks.
The volcanic eruptions affects the biosphere significantly. The biosphere is the portion of the earth where all life forms exists.
Gases and ash spewed during an eruption into the atmosphere causes severe changes to weather and leads to pollution. The atmosphere is the gaseous envelope round the earth.