The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m
Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:
Substitute numerical values:
The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
I think the correct answer would be that because electromagnets are powerful and can be turned off and on anytime. Electromagnet is a magnet in which the magnetic field is made by the electric current that is induced to the system.
The correct answer for this question is this one: "C. Neither Natalie nor Will." Natalie and Will are discussing socialization. Natalie says that socialization occurs when an animal becomes accustomed to the people in the household. <span>Will says that socialization is easily attained if the animal is first exposed to humans after 12 weeks of age.</span>
Answer:
Explanation:
Momentum is the product of mass and velocity.
The mass of the truck is 2,000 kilograms and the velocity is 35 meters per second.
Substitute the values into the formula and multiply.
The truck's momentum is <u>70,000 kilograms meters per second.</u>