Hi Sara
I would say it is an amorphous solid.
Because it's gradually loses shape.
I hope that's help:)
Answer:
<u>The Answer is (B) A car get rusty over the course of few years</u>Explanation:
<u>Explanation:</u>
- <u>Oxidation </u>refers to the process of loss of electrons by a molecule,atom or ion during a chemical reaction.The process which is just the opposite of oxidation is reduction,it occurs when their is gain of electrons .
- <u>When iron reacts with the oxygen it forms a chemical know as Rust.In this case iron has lost some electrons and the oxygen has gained some electrons</u>
<u></u>
Spiral galaxies have three main components: a bulge, disk, and halo (see right). The bulge is a spherical structure found in the center of the galaxy. This feature mostly contains older stars. The disk is made up of dust, gas, and younger stars. The disk forms arm structures. Our Sun is located in an arm of our galaxy, the Milky Way. The halo of a galaxy is a loose, spherical structure located around the bulge and some of the disk. The halo contains old clusters of stars, known as globular clusters<span>.
</span><span>
Elliptical galaxies are shaped like a spheriod, or elongated sphere. In the sky, where we can only see two of their three dimensions, these galaxies look like elliptical, or oval, shaped disks. The light is smooth, with the surface brightness decreasing as you go farther out from the center. Elliptical galaxies are given a classification that corresponds to their elongation from a perfect circle, otherwise known as their ellipticity. The larger the number, the more elliptical the galaxy is. So, for example a galaxy of classification of E0 appears to be perfectly circular, while a classification of E7 is very flattened. The elliptical scale varies from E0 to E7. Elliptical galaxies have no particular axis of rotation.
</span>
Answer:
5230J
Explanation:
Mass (m) = 250g
Initial temperature (T1) = 25°C
Final temperature (T2) = 30°C
Specific heat capacity (c) = 4.184J/g°C
Heat energy (Q) = ?
Heat energy (Q) = Mc∇T
Q = heat energy
M = mass of the substance
C = specific heat capacity
∇T = change in temperature = T2 - T1
Q = 250 × 4.184 × (30 - 25)
Q = 1046 ×5
Q = 5230J
The heat energy required to raise the temperature of 250g of water from 25°C to 30°C is 5230J
For example, at sea level the atmospheric pressure is 760 mm Hg<span> (also expressed as 760 torr, 101325 Pa, 101.3 kPa, 1013.25 mbar or 14.696 psi) and pure </span>water<span> boils at 100°C. However, in Calgary (approx. 1050m above sea level) the atmospheric pressure is approximately 670 </span>mm Hg<span>, and </span>water<span> boils at about 96.6°C.</span>