Answer:
See explanation.
Explanation:
Hello there!
In this case, according to the described chemical reaction, we first write the corresponding equation to obtain:

Thus, we proceed as follows:
Part 1 of 3: here, since the molar mass of silver and copper (II) nitrate are 107.87 and 187.55 g/mol respectively, and the mole ratio of the former to the latter is 2:1, we can set up the following stoichiometric expression:

Part 2 of 3: here, the molar mass of copper is 63.55 g/mol and the mole ratio of silver to copper is 2:1, the mass of the former that was used to start the reaction was:

Part 3 of 3: here, the molar mass of silver nitrate is 169.87 g/mol and their mole ratio 2:2, thus, the mass of initial silver nitrate is:

Best regards!
I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
D, they can be renewed quickly rather than non renewables in which nonrenewable take millions of years. Biomass is all around us, so is water (hydro) and the sun is around us too.
The change is that the water will freeze to 0 or minus I don’t know as I’m not to sure
Answer:
The dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
Explanation:

The rate of the reaction ;
![R=k[C_4H_6]^x](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5Ex)
As given in the question , that graph of time verses
was linear but plots of
or
was curved.
Generally:
Graph of time verses
for zero order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with positive slope.
So, the dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)