1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anvisha [2.4K]
3 years ago
10

In a heat-treating process, a 1-kg metal part, initially at 1075 K, is quenched in a closed tank containing 100 kg of water, ini

tially at 295 K. There is negligible heat transfer between the contents of the tank and their surroundings. Modeling the metal part and water as incompressible with constant specific heats 0.5 kJ/kg K and 4.4 kJ/kg K, respectively, determine the final equilibrium temperature after quenching, in K.

Engineering
1 answer:
storchak [24]3 years ago
8 0

Answer:

attached below

Explanation:

You might be interested in
Proper ventilation is required when welding, so that you don't ____________.
galben [10]
I say the answers is A but if you mean ventilation in the area of the room then answer B
4 0
3 years ago
Read 2 more answers
For which of 'water' flow velocities at 200C can we assume that the flow is incompressible ? a.1000 km per hour b. 500 km per ho
ad-work [718]

Answer:d

Explanation:

Given

Temperature=200^{\circ}\approc 473 K

Also \gamma for air=1.4

R=287 J/kg

Flow will be In-compressible when Mach no.<0.32

Mach no.=\frac{V}{\sqrt{\gamma RT}}

(a)1000 km/h\approx 277.78 m/s

Mach no.=\frac{277.78}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.63

(b)500 km/h\approx 138.89 m/s

Mach no.=\frac{138.89}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.31

(c)2000 km/h\approx 555.55 m/s

Mach no.=\frac{555.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=1.27

(d)200 km/h\approx 55.55 m/s

Mach no.=\frac{55.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.127

From above results it is clear that for Flow at velocity 200 km/h ,it will be incompressible.

5 0
3 years ago
A car accelerates from rest with an acceleration of 5 m/s^2. The acceleration decreases linearly with time to zero in 15 s, afte
Tpy6a [65]

Answer: At time 18.33 seconds it will have moved 500 meters.

Explanation:

Since the acceleration of the car is a linear function of time it can be written as a function of time as

a(t)=5(1-\frac{t}{15})

a=\frac{d^{2}x}{dt^{2}}\\\\\therefore \frac{d^{2}x}{dt^{2}}=5(1-\frac{t}{15})

Integrating both sides we get

\int \frac{d^{2}x}{dt^{2}}dt=\int 5(1-\frac{t}{15})dt\\\\\frac{dx}{dt}=v=5t-\frac{5t^{2}}{30}+c

Now since car starts from rest thus at time t = 0 ; v=0 thus c=0

again integrating with respect to time we get

\int \frac{dx}{dt}dt=\int (5t-\frac{5t^{2}}{30})dt\\\\x(t)=\frac{5t^{2}}{2}-\frac{5t^{3}}{90}+D

Now let us assume that car starts from origin thus D=0

thus in the first 15 seconds it covers a distance of

x(15)=2.5\times 15^{2}-\farc{15^{3}}{18}=375m

Thus the remaining 125 meters will be covered with a constant speed of

v(15)=5\times 15-\frac{15^{2}}{6}=37.5m/s

in time equalling t_{2}=\frac{125}{37.5}=3.33seconds

Thus the total time it requires equals 15+3.33 seconds

t=18.33 seconds

3 0
3 years ago
Out
olchik [2.2K]

ave you ever seen a Rube Goldberg machine in action? You probably have, even if you didn’t know what it was. A Rube Goldberg machine is a contraption that uses a chain reaction to carry out a simple task. It performs a very basic job in a complicated way.

7 0
3 years ago
Un mol de gas ideal realiza un trabajo de 3000 J sobre su entorno, cuando se expande de manera isotermica a una temperatura de 5
Shkiper50 [21]

Answer:

74,4 litros

Explanation:

Dado que

W = nRT ln (Vf / Vi)

W = 3000J

R = 8,314 JK-1mol-1

T = 58 + 273 = 331 K

Vf = desconocido

Vi = 25 L

W / nRT = ln (Vf / Vi)

W / nRT = 2.303 log (Vf / Vi)

W / nRT * 1 / 2.303 = log (Vf / Vi)

Vf / Vi = Antilog (W / nRT * 1 / 2.303)

Vf = Antilog (W / nRT * 1 / 2.303) * Vi

Vf = Antilog (3000/1 * 8,314 * 331 * 1 / 2,303) * 25

Vf = 74,4 litros

3 0
3 years ago
Other questions:
  • Memory Question!
    7·1 answer
  • Entropy change is evaluated using Eq. 6.2a based on an internally reversible process. Can the entropy change between two states
    14·1 answer
  • Who can work on a fixed ladder that extends more than 24 feet?
    11·1 answer
  • Air enters a compressor operating at steady state at 176.4 lbf/in.^2, 260°F with a volumetric flow rate of 424 ft^3/min and exit
    10·1 answer
  • Use the map to complete the table by selecting the boxes that best describe how ocean currents affect the
    14·1 answer
  • Advantages of using metal
    7·1 answer
  • Cup-sveg-aph<br><br>I m finding gf<br><br>if anyone interested pls come​
    11·2 answers
  • ░░░░░░░░░░░░░░░░░░░▄▀▐░░░▌
    15·1 answer
  • REVVIVE ME MY MOM WALKED IN MY ROOM AND SCARED THE BAJESUS OUTTA ME
    5·2 answers
  • What is the resistance of a resistor if the current flowing through it is 3mA and the voltage across it is 5.3V?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!