The reason why giant stars become planetary nebulas is Supergiant stars do not have enough mass to generate the gravity necessary to cause a planetary nebula.
<h3>Why do giant stars become planetary nebulae?</h3>
A planetary nebula is known to be formed or created by a dying star. A red giant is known to be unstable and thus emit pulses of gas that is said to form a sphere around the dying star and thus they are said to be ionized by the ultraviolet radiation that the star is known to releases.
Learn more about giant stars from
brainly.com/question/27111741
#SPJ1
Answer:
V1=5<u>ft3</u>
<u>V2=2ft3</u>
n=1.377
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=4lb*1.25ft3/lb=5<u>ft3</u>
state 2
V2=m.v2
V2=4lb*0.5ft3/lb= <u> 2ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/53)/ ln (2/5)
n=1.377
R = distance
dr/dt speed or with a direction, velocity
d(dr/dt)/dt = the time derivative of the velocity is called acceleration.
Speed is a scalar. Acceleration is a vector.
Answer:
a) 84.034°C
b) 92.56°C
c) ≈ 88 watts
Explanation:
Thickness of aluminum alloy fin = 12 mm
width = 10 mm
length = 50 mm
Ambient air temperature = 22°C
Temperature of aluminum alloy is maintained at 120°C
<u>a) Determine temperature at end of fin</u>
m = √ hp/Ka
= √( 140*2 ) / ( 12 * 10^-3 * 55 )
= √ 280 / 0.66 = 20.60
Attached below is the remaining answers
Answer:
They find problems and solutions by working together
Explanation: