The alloy has a density of 21.186g/cc. So for a kilogram or 1000 grams/21.186 g/cc= 45.7 cc. So the answer is 45.7 cc of the allow to make up a kilogram which shows that the density of the allow can be used to calculate the volume of a larger mass ie the kilogram.
Answer:
0.6 Ω
Explanation:
From the question given above, the following data were obtained:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
From Ohm's law,
V = IR
Where:
V => is the voltage
I => is the current
R => R is the resistance
With the above formula, we can obtain the resistance as follow:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
V = IR
12 = 20 × R
Divide both side by 20
R = 12 / 20
R = 0.6 Ω
Thus the resistance is 0.6 Ω
Answer:
5.6 seconds
Explanation:
The reaction follows a zero-order in dinitrogen monoxide
Rate = k[N20]^0 = change in concentration/time
[N20]^0 = 1
Time = change in concentration of N2O/k
Initial number of moles of N2O = 300 mmol = 300/1000 = 0.3 mol
Initial concentration = moles/volume = 0.3/4 = 0.075
Number of moles after t seconds = 150 mmol = 150/1000 = 0.15 mol
Concentration after t seconds = 0.15/4 = 0.0375 M
Change in concentration of N2O = 0.075 - 0.0375 = 0.0375 M
k = 0.0067 M/s
Time = 0.0375/0.0067 = 5.6 s
No. of atoms=mols*avagadros no.
N=n*No
N=17 * 6.022 *10^23
No. Of atoms=(17) (6.022*10^23)
To test for hydrogen, burn a candle near the suspected source of hydrogen. If you hear a squeaky pop sound, hydrogen is present because when hydrogen gas burns, it makes a squeaky pop sound.