Answer:
Part A. The half-cell B is the cathode and the half-cell A is the anode
Part B. 0.017V
Explanation:
Part A
The electrons must go from the anode to the cathode. At the anode oxidation takes place, and at the cathode a reduction, so the flow of electrons must go from the less concentrated solution to the most one (at oxidation the concentration intends to increase, and at the reduction, the concentration intends to decrease).
So, the half-cell B is the cathode and the half-cell A is the anode.
Part B
By the Nersnt equation:
E°cell = E° - (0.0592/n)*log[anode]/[cathode]
Where n is the number of electrons being changed in the reaction, in this case, n = 2 (Sn goes from S⁺²). Because the half-reactions are the same, the reduction potential of the anode is equal to the cathode, and E° = 0 V.
E°cell = 0 - (0.0592/2)*log(0.23/0.87)
E°cell = 0.017V
Answer:
lighting a match is the answer.
Answer:
Part A: 47.8 mi/h
Part B: 0.072 M/s
Part C: 0.144 M/s
Explanation:
Part A
The average speed or velocity (V) is the variation of the space divided by the variation of the time:
V = (241 - 2)/(8 -3)
V = 47.8 mi/h
Part B
As Part A, the average rate (r) of formation of I2 is the variation of the concentration divided by the variation of time:
r = (1.83 - 1.11)/(15 - 5)
r = 0.072 M/s
Part C
The rates of the substances are proportional of their number of moles (n) which are their coefficient, so:
rI2/nI2 = rHCl/nHCl
0.072/1 = rHCl/2
rHCl = 2*0.072
rHCl = 0.144 M/s
Answer:
The greenhouse effect is a phenomenon of radiative transfer, the process by which the energy of light waves is exchanged in matter. Radiative transfer dictates what energy is reflected, absorbed, and emitted. The greenhouse effect: A summary of the heat transfer in the Earth's atmosphere
Explanation:
trust me i have a huge brain and access to the internet
The only one I know for sure is Mass is always conserved In a Chemical reaction.