E = mct
Energy = (mass) x (specific heat capacity of water) x (change in temp)
585.24 = 53.2 x 4.2 x (X-24.15)
585.24 divided by 53.2 divided by 4.2 = X - 24.15
2.62 = X - 24.15
X= 26.77degrees C
(Specific heat capacity for water is 4.2 but is different for other liquids)
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay (-decay), beta decay (-decay), and gamma decay (-decay), all of which involve emitting one or more particles or photons. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the usual electromagnetic and strong forces.[1]
The balloon has traveled 30 meters up from the bicyclist and since it's rising 5 meters per second, 2 seconds later it will travel 10 meters higher. 2 seconds later the bicyclist will travel 20 meters away. so 10+20+30= 60 meters away from each other.
Answer:
- contains oxygen
- provides warmth
- blocks harmful energy from the Sun
Explanation:
The atmosphere is crucial when it comes to providing living conditions on Earth. The gases in the atmosphere manage to balance the things just about right, so that the life can thrive. The atmosphere has oxygen, the gas that is used by pretty much every organism to be able to function. With its greenhouse gases, the atmosphere manages to trap the heat inside, thus providing warmth to the Earth. The numerous layers of the atmosphere manage to block in big portion the harmful energy from the Sun, with a special accent on the ozone layer, a layer that manages to stop most of the UV radiation.
Answer:
Greater
Explanation:
According to the law of universal gravitation, the force of gravitation is directly proportional to the product of the masses of the two objects and INDIRECTLY proportional to the square of the distance. In short, the bigger the masses, the stronger the gravitational force, the lesser the distance between the two objects, the greater the gravitational force.