Answer:
0.387 g
Explanation:
pH of the buffer = 1
V = Volume of solution = 100 mL
[HA] = Molarity of HA = 0.1 M
= Acid dissociation constant =
(assuming base as
)
Molar mass of base = 322.2 g/mol
pKa is given by

From the Henderson-Hasselbalch equation we get
![pH=pK_a+\log\dfrac{[A^-]}{[HA]}\\\Rightarrow pH-pK_a=\log\dfrac{[A^-]}{[HA]}\\\Rightarrow 10^{pH-pK_a}=\dfrac{[A^-]}{[HA]}\\\Rightarrow [A^-]=10^{pH-pK_a}[HA]\\\Rightarrow [A^-]=10^{1-1.92}\times0.1\\\Rightarrow [A^-]=0.01202\ \text{M}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%5Cdfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D%5C%5C%5CRightarrow%20pH-pK_a%3D%5Clog%5Cdfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D%5C%5C%5CRightarrow%2010%5E%7BpH-pK_a%7D%3D%5Cdfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D%5C%5C%5CRightarrow%20%5BA%5E-%5D%3D10%5E%7BpH-pK_a%7D%5BHA%5D%5C%5C%5CRightarrow%20%5BA%5E-%5D%3D10%5E%7B1-1.92%7D%5Ctimes0.1%5C%5C%5CRightarrow%20%5BA%5E-%5D%3D0.01202%5C%20%5Ctext%7BM%7D)
Moles of base

Mass of base is given by

The required mass of the base is 0.387 g.
Answer:
I know that option F is correct
Explanation:
Answer:
True
Explanation:
The complete question is:
<u><em>"A reaction contains two reactants, A and B. If A is doubled, there will be a greater number of effective collisions between reactants. TRUE FALSE"</em></u>
Collision Theory indicates that chemical reactions take place because molecules, atoms or ions collide with each other.
Furthermore, the molecules must collide effectively, that is, not all reagent collisions lead to product formation. Effective shock means that the reagent molecules have enough kinetic energy at the time of the shock for their bonds to break and product bonds to form. In addition, the molecules of the reagents must be properly oriented for the reaction to take place.
As the concentration increases, the number of shocks increases. In other words, by increasing the concentration of the reactants, the probability of collision between their molecules increases, and therefore the number of effective collisions.So the statement is true-
<span>Quarks are present in protons and neutrons but not in electrons.</span>