Answer: a) The acceletarion is directed to the center on the turntable. b) 5 cm; ac= 0.59 m/s^2; 10 cm, ac=1.20 m/s^2; 14 cm, ac=1.66 m/s^2
Explanation: In order to explain this problem we have to consider teh expression of the centripetal accelartion for a circular movement, which is given by:
ac=ω^2*r where ω and r are the angular speed and teh radios of the circular movement.
w=2*π*f
We know that the turntable is set to 33 1/3 rev/m so
the frequency 33.33/60=0.55 Hz
then w=2*π*0.55=3.45 rad/s
Finally the centripetal acceleration at differents radii results equal:
r= 0.05 m ac=3.45^2*0.05=0.50 m/s^2
r=0.1 ac=3.45^2*0.1=1.20 m/s^2
r=0.14 ac=3.45^2*0.14=1.66 m/s^2
In mechanics, an impact is a highforce or shock applied over a short time period when two or more bodies collide. Such a force or acceleration usually has a greater effect than a lower force applied over a proportionally longer period. ... Resilient materials will have betterimpact resistance.
The time it takes an object to complete one oscillation and return to its initial position is measured in terms of a period, or T. The formula for the angular frequency is = 2/T.
<h3>How is G determined in oscillation?</h3>
Use a stopwatch to calculate the oscillation's time period T. Calculate the pendulum's length L. Subtract the time period T's square from the length L.
<h3>How does oscillation's G work?</h3>
A mass attached to the end of a pendulum with a length of l causes it to oscillate with a period (T). T = 2(l/g), where g.
To know more about angular frequency visit:-
brainly.com/question/29107224
#SPJ4
To answer this question do you need to know the formula to get the rate of change of acceleration (a=Δv/Δt; Δv= final velocity - initial velocity) and the formula to find the force of an object given a constant acceleration (F=m*a). Given these two formulas you can applicate them to solve for the mass of an object.