Answer:
4.5 x 10¹⁴ Hz
666.7 nm
1.8 x 10⁵ J
The color of the emitted light is red
Explanation:
E = energy of photons of light = 2.961 x 10⁻¹⁹ J
f = frequency of the photon
Energy of photons is given as
E = h f
2.961 x 10⁻¹⁹ = (6.63 x 10⁻³⁴) f
f = 4.5 x 10¹⁴ Hz
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of photon
Using the equation
c = f λ
3 x 10⁸ = (4.5 x 10¹⁴) λ
λ = 0.6667 x 10⁻⁶ m
λ = 666.7 x 10⁻⁹ m
λ = 666.7 nm
n = number of photons in 1 mole = 6.023 x 10²³
U = energy of 1 mole of photons
Energy of 1 mole of photons is given as
U = n E
U = (6.023 x 10²³) (2.961 x 10⁻¹⁹)
U = 1.8 x 10⁵ J
The color of the emitted light is red
Yes it depends on the column on the periodic table
Answer:
meters
Explanation:
I'm not positive if this is correct, your teacher may be looking for a broader answer so possibly just 'distance'. Hope this helps! <3
Answer:
0 N, 3.49 m/s
Explanation:
Draw a free body diagram for the bucket at the top of the swing. There are two forces acting on the bucket: weight and tension, both downwards.
If we take the sum of the forces in the radial direction, where towards the center is positive:
∑F = ma
W + T = m v² / r
The higher the velocity that Rony swings the bucket, the more tension there will be. The slowest he can swing it is when the tension is 0.
W = m v² / r
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 1.24 m:
v = √(9.8 m/s² × 1.24 m)
v = 3.49 m/s
Explanation:
The supermassive black holes that the Event Horizon Telescope is observing are far larger; Sagittarius A*, at the center of the Milky Way, is about 4.3 million times the mass of our sun and has a diameter of about 7.9 million miles (12.7 million km), while M87 at the heart of the Virgo A galaxy is about 6 billion solar ..