Answer:
56.86153 N
Explanation:
t =Time taken
F = Force
Power

Work done

The magnitude of the force that is exerted on the handle is 56.86153 N
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
Can you please stop pasting this question, just go to his profile and ask him.
Answer:
acceleration = v-u /t
30- 20/5
= 10/5 = 2m/sec²
Force = mass * acceleration
Force = 0.1 * 2
Force = 0.2 Newton
Odd though it seems at first, gravity is pulling the cat down while the floor is pushing the cat up - in equal amounts. Forces are absolutely acting on the cat but they balance - so there is no net force.