Answer:
713.51 N/m
Explanation:
Hook's Law: This law states that provided the elastic limit is not exceeded, the extension in an elastic material is directly proportional to the applied force.
From hook's law,
F = ke ...........................Equation 1
Where F = Force exerted on the bowstring, e = Extension/compression of the bowstring, k = Spring constant of the bow.
Make k the subject of the equation,
k = F/e ............................ Equation 2
Given: F = 264 N, e = 0.37 m.
Substitute into equation 2
k = 264/0.37
k = 713.51 N/m
Hence the spring constant of the bow = 713.51 N/m
Answer:
hard and brittle
hope this helps you ☺️☺️
good night take care sweet dream
The collision of the molecules between the hydrogen molecule or H2, and an iodine molecule or I2, provided there would be a sufficient energy is that the system would eventually undergo a chemical change wherein a new chemical compound would be formed from these two molecules.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
<span>P2 = P1V1/V2</span>
<span>
</span>
<span>The correct answer is the first option. Pressure would increase. This can be seen from the equation above where V2 is indirectly proportional to P2.</span>
Mechanical Energy
Mechanism energy is the energy associated with the position and motion of an object. Therefore it is also the summation of the kinetic and potential energies of the object.
Explanation:
Mechanism energy is the energy associated with the position and motion of an object. Therefore it is also the summation of the kinetic and potential energies of the object.
In the muscles, to have movement, the chemical bonds in ATP is broken to enable the sliding action of the myosin and actin fibres of a sarcomere (the basic unit of muscle). This sliding action is responsible for contraction of muscle. The coordinated contractions and relaxations of sarcomeres on muscles result in movement which translates to mechanical energy.
This process is never 100% efficient with some energy lost as heat energy.
Learn More:
For more on energy transformation check out;
brainly.com/question/12764386
brainly.com/question/12841537
#LearnWithBrainly