Text book: We can measure the mass of the text book easily by weighing machine, to measure the volume we need to measure the length, width, and height of the text book by the ruler, by multiplying these dimension we can get the volume of the text book, and by dividing the mass of the book with its volume we can get the density of the book.
Milk Container: We can measure the mass of the milk container easily by weighing machine, now (assuming the milk container is cylindrical in shape) we need to measure its height, and and diameter and by the formula (π*r^2*h) we can measure its volume, and and by dividing the mass with its volume we can get the density of the milk container.
Air filled balloon: we can measure the mass of the air filled balloon by weighing it weight machine, we know that the density of air is 28.97 kg/m^3, by dividing the mass of the balloon with the denisty of air we can get the volume of the balloon.
The characteristic of epithelial cells that makes them ideal for providing this type of protection is that the cells are packed tightly together.
Skin, the body's largest organ,is our first and best defense against external aggressors. The many layers work hard to protect us, however when its condition is compromised, its ability to work as an effective barrier is impaired.
Answer:
θ = Cos⁻¹[A.B/|A||B|]
A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result
Explanation:
We can use the formula of the dot product, in order to find the angle between two non-zero vectors. The formula of dot product between two non-zero vectors is written a follows:
A.B = |A||B| Cosθ
where,
A = 1st Non-Zero Vector
B = 2nd Non-Zero Vector
|A| = Magnitude of Vector A
|B| = Magnitude of Vector B
θ = Angle between vector A and B
Therefore,
Cos θ = A.B/|A||B|
<u>θ = Cos⁻¹[A.B/|A||B|]</u>
Hence, the correct answer will be:
<u>A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result</u>
Answer:
answer is 10km
Explanation:
use "S =Ut "
S=distance U=velocity t =time
no need to convert time into seconds as the velocity has given in meters per minute
Answer:
After finding the electric potential VP at point P = Q/Чπϵ₀L ㏑(1+
)
Explanation:
I believe it is a part C question.
The derivative of V and P will be directly proportional to the differential dq and the inverse of Чπϵ₀δ........
Please find detailed solution in the attached picture as i believe that is the answer to the part C question you are seeking for.