The response would become spontaneous if the value of ΔG° was negative.
According to the estimated value of ΔG°, it is shown that ΔG° value decreases as temperature value increases. The value shifts from being more favorable to being less favorable. It would appear that the value of ΔG° would be negative at a specific temperature, causing the reaction to occur spontaneously.
The reaction is in an equilibrium state if ΔG = 0. If ΔG < 0, the reaction is spontaneous in the direction written. The relationship between terms from the equilibrium is paralleled by the relevance of the sign of a change in the Gibbs free energy.
Learn more about ΔG° here:
brainly.com/question/14512088
#SPJ4
It’s d like 100000000% trust me
Answer:
The half-life of Material 1 and Material 2 are equal.
step by step explanation;
Material 1 disintegrates to half its mass three times in 21.6 s, to go from 100g
to 12.5g. That is,
100g - 50g - 25g - 12.5g
Material 2 disintegrates to half its mass three times in 21.6 s, to go from 200g to 25g. That is,
200g - 50g - 25g - 12.5g.
This means that regardless of their initial masses involved, material 1 and material 2 have equal half-life.
Their half-life is 21.6 ÷ 3 = 7.2 sec
<u>Answer:</u> The volume of acid should be less than 100 mL for a solution to have acidic pH
<u>Explanation:</u>
To calculate the volume of acid needed to neutralize, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is HCl
are the n-factor, molarity and volume of base which is NaOH
We are given:

Putting values in above equation, we get:

For a solution to be acidic in nature, the pH should be less than the volume of acid needed to neutralize.
Hence, the volume of acid should be less than 100 mL for a solution to have acidic pH
Answer:
480.6 g
Explanation:
Given data:
Number of molecules of methanol = 9.01 ×10²⁴
Mass in gram = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
9.01 ×10²⁴molecules ×1 mol /6.022 × 10²³ molecules
1.5 ×10¹ mol
15 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 15 mol × 32.04 g/mol
Mass = 480.6 g