Answer:
615 g
Explanation:
In order to convert from moles of any given substance into grams, we have to use said substance's <em>molar mass</em>, as follows:
- # moles * Molar mass = grams of substance.
Thus, we now <u>calculate the molar mass of beryllium iodide</u>, BeI₂, using the <em>molar masses of the elements</em>:
- Molar Mass of BeI₂ = Molar Mass of Be + (Molar Mass of I)*2 = 262.821 g/mol
Finally we <u>calculate how many grams are there in 2.34 moles of BeI₂</u>:
- 2.34 mol * 262.821 g/mol = 615 g
The correct answer is B,
<span>It is endothermic, with both positive enthalpy and entropy changes.</span>
If you were to compare the mass of the products and reactants in a reaction, you would find that the mass of the products is <span>equal to the mass of the reactants.</span>
Answer:

Explanation:
Potassium nitrate is a soluble salt which readily dissolves in a polar solvent, such as water. When solid potassium nitrate is dissolved in water, it dissociates into potassium cations and nitrate anions.
Due to the resultant ionic charges, the polar water molecules attract the resultant ions and potassium nitrate ions become hydrated, that is, surrounded by water molecules.
Nitrate, our anion, attracts the partially positive ends of water molecules by attracting them via hydrogen atom.
Potassium, the cation, attracts the partially negative end of water molecules by attracting via oxygen atom.
The steps to be followed while cleaning volumetric glassware are:
1. Remnants from the previous measurements are wiped off with the help of paper towel.
2. The glassware is then soaked overnight in warm soap solution.
3. Then before rinsing with tap water, the glassware are scrubbed with an appropriate brush.
4. After scrubbing, the glassware is rinsed thoroughly with tap water in order to make sure there are no traces of soap solution.
5. The glassware is then rinsed with de-ionized water and finally with the solution that would be used for the volumetric measurement.