1) Write the balanced equation to state the molar ratios:
<span>3H2(g) + N2(g) → 2NH3(g)
=> molar ratios = 3 mol H2 : 1 mol N2 : 2 mol NH3
What volume of nitrogen is needed to produce 250.0 L of ammonia gas at STP?
First, convert the 250.0 L of NH3 to number of moles at STP .
Use the fact that 1 mole of gas at STP occupies 22.4 L
=> 250.0 L * 1mol/22.4 L = 11.16 L
Second, use the molar ratio to find the number of moles of N2 that produces 11.16 L of NH3
=> 11.16 L NH3 * [1 mol N2 / 2 mol NH3] = 5.58 mol N2
Third, convert 5.58 mol N2 into liters at STP
=> 5.58 mol N2 * [22.4 L/mol] = 124.99 liters
Answer: 124,99 liters
What volume of hydrogen is needed to produce 2.50 mol NH3 at STP?
First, find the number of moles of H2 that produce 2.50 mol by using the molar ratios:
2.50 mol NH3 * [3mol H2 / 2 mol NH3] = 3.75 mol H2
Second, convert the number of moles to liters of gas at STP:
3.75 mol * 22.4 L/mol = 84 liters of H2
Answer: 84 liters
</span>
Answer:
the equilibrium concentration of [PCl₅] is 3.64*10⁻³ M
Explanation:
for the reaction
PCl₅(g) → PCl₃(g) + Cl₂(g)
where
Kc= [PCl₃]*[Cl₂]/[PCl₅] = 2.0*10¹ M = 20 M
and [A] denote concentrations of A
if initially the mixture is pure PCl₅ , then it will dissociate according to the reaction and since always one mole of PCl₃(g) is generated with one mole of Cl₂(g) , the total number of moles of both at the end is the same → they have the same concentration → [PCl₃(g)] = [Cl₂]=0.27 M
therefore
Kc= [PCl₃]*[Cl₂]/[PCl₅] = 0.27 M* 0.27 M /[PCl₅] = 20 M
[PCl₅] = 0.27 M* 0.27 M / 20 M = 3.64*10⁻³ M
[PCl₅] = 3.64*10⁻³ M
the equilibrium concentration of [PCl₅] is 3.64*10⁻³ M
First, you mix the salt and sand with water, so the salt dissolves. Next, you filter the sand out, so you have the slat water and sand separated. Then, you evaporate the water, leaving the salt behind.
Answer: gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.
Question:
How many neutrons are there in 186W
Answer:
112
hope it helps (^^)
# Cary on learning