Answer:
A police radar gun uses X-band microwave radiation at a frequency of 13.1 GHz. Microwaves travel at the speed of light, or 3x108 m/s. Since the frequency shift will be small for practical car speeds and difficult to detect, the shifted frequency is compared to the original frequency, and the resulting beat frequency is used to determine the speed of the car.
a.) If Michael is traveling at 29 m/s, what is the resulting beat frequency that the radar gun detects?
ANSWER: 2533 Hz
Explanation:
The hardest part of the job is to find the right formula to use, and write it down. You've already done that ! The rest is just turning the crank until an answer falls out.
You wrote. E = m g h.
Beautiful.
Now divide each side by (g h), and you'll have the formula for mass:
m = E / (g h).
You know all the numbers on the right side. Just pluggum in, do the arithmetic, and you'll have the mass.
Answer:
10259.6 m
Explanation:
We are given that
Radius of small wheel,r=0.17 m
Radius of large wheel,r'=0.92 m
Initial velocity,u=0
Time,t=2.7 minutes=162 s
1 min=60 s
Velocity,v=10m/s
Time,t'=13.7 minutes=822 s
Time,t''=4.1 minutes=246 s

Substitute the values



Substitute the values




Total distance traveled by rider=s+s'+s''=809.6+8220+1230=10259.6 m
Answer:
25 N
Explanation:
Work is a product of force and perpendicular distance moved.
W=Fd where F is force exerted and d is perpendicular distance.
However, for this case, the distance is inclined hence resolving it to perpendicular so that it be along x-axis we have distance as 
Therefore, 
Making F the subject of the formula then
where
is the angle of inclination. Substituting 190 J for W then 18 degrees for
and 8 m for d then
Question:
A point charge of -2.14uC is located in the center of a spherical cavity of radius 6.55cm inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.
a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity.
Express your answer using two significant figures.
Answer:
The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity 
Explanation:
A point charge ,q =
is located in the center of a spherical cavity of radius ,
m inside an insulating spherical charged solid.
The charge density in the solid , d = 
Distance from the center of the cavity,R =
Volume of shell of charge= V =![(\frac{4\pi}{3})[ R^3 - r^3 ]](https://tex.z-dn.net/?f=%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D)
Charge on the shell ,Q = 
![Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d](https://tex.z-dn.net/?f=Q%20%3D%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D%20%5Ctimes%20d)
![Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}](https://tex.z-dn.net/?f=Q%20%3D%204.1888%5Ctimes%2010%5E%7B-4%7D%20%5B5.76364%20%5D%20%5Ctimes%207.35%20%5Ctimes%2010%5E%7B-4%7D)


Electric field at
m due to shell
E1 = 

Electric field at
due to 'q' at center 
E2 =

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity
= E2- E1
![=[ 2.134 - 1.769 ]\times 10^6](https://tex.z-dn.net/?f=%3D%5B%20%202.134%20%20-%201.769%20%5D%5Ctimes%2010%5E6)
