Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.
Answer:
1. The precession of the equinoxes.
2. Changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun.
3. Variations in the eccentricity
Explanation:
These variations listed above; the precession of the equinoxes (refers, changes in the timing of the seasons of summer and winter), this occurs on a roughly about 26,000-year interval; changes in the tilt angle of Earth’s rotational axis relative to the plane of Earth’s orbit around the Sun, this occurs roughly in a 41,000-year interval; and changes in the eccentricity (that is a departure from a perfect circle) of Earth’s orbit around the Sun, occurring on a roughly 100,000-year timescale. which influences the mean annual solar radiation at the top of Earth’s atmosphere.
Answer:
Friction force on the bullet is 58.7 N opposite to its velocity
Explanation:
As we know that initial speed of the bullet is 55 m/s
after travelling into the sand bag by distance d = 1.34 m it comes to rest
so final speed

now we can use kinematics top find the acceleration of the bullet

so we have


now by Newton's II law we know that

so we have


Answer:
Weight = 3.92 N
Explanation:
Given:
Mass m = 0.4 kg
Acceleration due to gravity g = 9.8 m/s²
Find:
Weight
Computation:
Weight = Mass x Acceleration due to gravity
Weight = 0.4 x 9.8
Weight = 3.92 N