Answer:
Newton
Explanation:
The SI unit of force is the newton, symbol N. The base units relevant to force are: The metre, unit of length — symbol m. The kilogram, unit of mass — symbol kg.
Answer:
a) α=7.9x10^-4 rad
b) θ=1.12x10^-4 rad
c) The Earth and the Moon cannot be seen without a telescope.
Explanation:
In this exercise we will use the concepts of angular resolution, which depends on both the wavelength of the rays and the diameter of the eye or lens on the meter. Its unit of measure is the radian. The attached image shows the solution step by step.
The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1
Answer:
a)Distance traveled during the first second = 4.905 m.
b)Final velocity at which the object hits the ground = 38.36 m/s
c)Distance traveled during the last second of motion before hitting the ground = 33.45 m
Explanation:
a) We have equation of motion
S = ut + 0.5at²
Here u = 0, and a = g
S = 0.5gt²
Distance traveled during the first second ( t =1 )
S = 0.5 x 9.81 x 1² = 4.905 m
Distance traveled during the first second = 4.905 m.
b) We have equation of motion
v² = u² + 2as
Here u = 0, s= 75 m and a = g
v² = 0² + 2 x g x 75 = 150 x 9.81
v = 38.36 m/s
Final velocity at which the object hits the ground = 38.36 m/s
c) We have S = 0.5gt²
75 = 0.5 x 9.81 x t²
t = 3.91 s
We need to find distance traveled last second
That is
S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m
Distance traveled during the last second of motion before hitting the ground = 33.45 m
A. electrons<span> and </span>neutrons<span> B. </span>electrons<span> and </span>protons<span> C. </span>protons<span> and </span>neutrons<span> D. all particles are attracted to each other. According to atomic theory, </span>electrons<span> are usually found: A. in the </span>atomic nucleus<span> B. outside the nucleus, yet very near it because they are attracted to the </span>protons<span>.</span>