Answer is "C".
<em><u>Explanation
</u></em>
Single replacement reaction is a type of reaction which one reactant reacts with another and makes a product by replacing one element by another.
Mg (Magnesium) reacts with Al₂O₃ (Aluminium oxide) and produces MgO (Magnesium oxide) and Al (Aluminium) as products. Here Al is replaced by Mg. Reaction is
Mg + Al₂O₃ → MgO + Al
To balance the reaction equation, both left and right hand sides should have same number of atoms in each element.
Here,
<em>Left Hand Side has </em> <em>Right Hand Side has</em>
Mg = 1 atom Mg = 1 atom
Al = 2 atom Al = 1 atom
O = 3 atom O = 1 atom
First step : balance the O atoms in both sides. To do that "3" should be added before MgO.
Second step : After balancing O atoms, there will be 3 Mg atoms in right hand side. Hence to balance Mg atoms again "3" should be added before Mg in left hand side
Third step : as the final step balance the Al atoms by adding "2" before Al in the right hand side.
Then final balanced equation should be
3Mg + Al₂O₃ → 3MgO + 2Al
1) Hydrocarbon: CH3 - CH2 - CH2 - CH2 - CH3
2) Only single bonds => alkane => sufix ane
3) no substitutions
4) 5 carbons = > prefix penta.
Therefore, the name is pentane.
Answer: The molarity of KBr in the final solution is 1.42M
Explanation:
We can calculate the molarity of the KBr in the final solution by dividing the total number of moles of KBr in the solution by the final volume of the solution.
We will first calculate the number of moles of KBr in the individual sample before mixing together
In the first sample:
Volume (V) = 35.0 mL
Concentration (C) = 1.00M
Number of moles (n) = C × V
n = (35.0mL × 1.00M)
n= 35.0mmol
For the second sample
V = 60.0 mL
C = 0.600 M
n = (60.0 mL × 0.600 M)
n = 36.0mmol
Therefore, we have (35.0 + 36.0)mmol in the final solution
Number of moles of KBr in final solution (n) = 71.0mmol
Now, to get the molarity of the final solution , we will divide the total number of moles of KBr in the solution by the final volume of the solution after evaporation.
Therefore,
Final volume of solution (V) = 50mL
Number of moles of KBr in final solution (n) = 71.0mmol
From
C = n / V
C= 71.0mmol/50mL
C = 1.42M
Therefore, the molarity of KBr in the final solution is 1.42M
Fluorine has 9 protons and 9 electrons
Iodine has 53 protons and 53 electrons
C-c-c-c-c
|
c
c-c-c-c-c
|
c
c
|
c-c-c-c
|
c
c-c-c-c
| |
c c