Explanation:
When water is boiled in the flask . Some portion of it is evaporated out . Now when cork is placed on it and is placed in the ice box . It cools down , by which the pressure inside decreases .
Due to decrease of pressure , the boiling point of water also decreases . Now it can boil at lower temperature . Thus it starts boiling at lower temperature even , when placed in the ice box .
B 20 m/s
It should go to 100 that fast nor 40
Because a Btu is so small, energy is usually measured in millions of Btus. 1 Btu = the amount of energy required to increase the temperature of one pound of water (which is equivalent to one pint) by one degree Fahrenheit. This is roughly the heat produced from burning one match.
<em>https://www.ucsusa.org/clean_energy/our-energy-choices/how-is-energy-measured.html</em>
Answer:
A. 181.24 N
Explanation:
The magnitude of hte electrostatic force between two charged objects is given by the equation

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
In this problem, we have:
is the magnitude of the 1st charge
is the magnitude of the 2nd charge
r = 2.5 cm = 0.025 m is the separation between the charges
Therefore, the magnitude of the electric force is:

So, the closest answer is
A) 181.24 N
The block has the greatest average power provided is bock m.
<h3>What is instantaneous power?</h3>
- This is the product of force and velocity exerted on an object.
Mathematically instantaneous power is calculated as;
P = Fv
where;
- F is the applied force
- v is the velocity
Both blocks (m and 2m) will experience the same force but different velocity.
The smaller block (m) will experience greater velocity.
Thus, the block has the greatest average power provided is bock m.
Learn more about instantaneous power here: brainly.com/question/8893970