The Moon is 3.8 108 m from Earth and has a mass of 7.34 1022 kg. 5.97 1024 kg is the mass of the Earth.
<h3>What kind of gravitational pull does the moon have on the planet?</h3>
On the surface of the Moon, the acceleration caused by gravity around 1.625 m/s2 which is 16.6% greater than on the surface of the Earth 0.166.
<h3>What does the Earth's center's gravitational pull feel like?</h3>
Gravity is zero if you are in the centre of the earth since everything around you is pulling "up" (up is the only direction).
<h3>Where is the Earth's and the moon's gravitational centre?</h3>
It is around 1700 kilometres below Earth's surface.
To know more about gravitational force visit:-
brainly.com/question/12528243
#SPJ4
From the case we know that:
- The moment of inertia Icm of the uniform flat disk witout the point mass is Icm = MR².
- The moment of inerta with respect to point P on the disk without the point mass is Ip = 3MR².
- The total moment of inertia (of the disk with the point mass with respect to point P) is I total = 5MR².
Please refer to the image below.
We know from the case, that:
m = 2M
r = R
m2 = 1/2M
distance between the center of mass to point P = p = R
Distance of the point mass to point P = d = 2R
We know that the moment of inertia for an uniform flat disk is 1/2mr². Then the moment of inertia for the uniform flat disk is:
Icm = 1/2mr²
Icm = 1/2(2M)(R²)
Icm = MR² ... (i)
Next, we will find the moment of inertia of the disk with respect to point P. We know that point P is positioned at the arc of the disk. Hence:
Ip = Icm + mp²
Ip = MR² + (2M)R²
Ip = 3MR² ... (ii)
Then, the total moment of inertia of the disk with the point mass is:
I total = Ip + I mass
I total = 3MR² + (1/2M)(2R)²
I total = 3MR² + 2MR²
I total = 5MR² ... (iii)
Learn more about Uniform Flat Disk here: brainly.com/question/14595971
#SPJ4
There's no digram because I'm mr lemonade mr French fries
A) No, the equations presented above are the product of the derivation of position and velocity when the acceleration is constant.
The equations change to polynomial function of the second degree for the description of the acceleration when described as a function of time.
B) Yes, when the acceleration is zero it is concluded that the velocity is constant, therefore they could be used to describe the position as a function of the change in velocity.