Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.
Answer:
Explanation:
Using the below formula
Speed of sound = ( distance between observers) *2/(total time taken)
Now putt the given values ,
time taken = 0.80 sec
distance = 256 m
hence
V of sound= 256*2/0.80
V of sound = 640 m/sec
Answer:
its probably still trying to load ur next rank or whatever it did it to me too
Explanation:
m1= mass 1 = 1.1 kg
Vi1 = initial velocity 1 = 2.7 m/s
m2= 2.4 kg
V2i = -1.9 m/s
We assume east as positive and west as negative.
Apply the formulas:
Vf1 = ?

Replacing:



Answer: 3.6 m/s west
C. The number of F atoms in the reactants equals the number of F atoms in the products.