The amount left of a radioactive sample amount N0 if the decay constant is 0.00125 seconds and the time is 180 seconds is 0.7999 N.
<h3>What is half-life?</h3>
The time it takes for half of the original population of radioactive atoms to decay is called the half-life. The relationship between the half-life T1/2 and the decay constant is given by T1/2 = 0.693/λ.
- N=N0e−λt
- given λ = 0.00125 seconds
- t = 180 seconds
- Now putting values.
- N=N0e−λt = 0.799
- N= 0.7999.
Read more about the radioactive :
brainly.com/question/2320811
#SPJ1
To solve this problem we will apply the concepts related to the conservation of momentum. Momentum is defined as the product between mass and velocity of each body. And its conservation as the equality between the initial and final momentum. Mathematically described as

Here
= Mass of big fish
= Mass of small fish
= Velocity of big fish
= Velocity of small fish
= Final Velocity
The big fish eats small fish and the final velocity is zero. Rearrange the equation for the initial velocity of small fish we have


Replacing we have,


The negative sign indicates that the small fish is swimming in the direction opposite to that of the big fish.
Therefore the speed of the small fish is 10m/s
Answer: it is C
The thermistor
Explanation:
Thermistors (temperature-sensitive, or thermal, resistors) are used as temperature-measuring devices and in electrical circuits to compensate for temperature variations of other components. They are also used to measure radio-frequency power and radiant power, such as infrared and visible light.
To measure the intensity of the electromagnetic wave after knowing the frequency, we can calculate it by using fast fourier transformations (FFT).
Answer:

Explanation:
As in any sample you will have 75.8% of Cl-35 iosotopes and 24.3% of Cl-37 iosotopes you can get the average atomic mass as:

Well, since you only want direction, ignore the numbers. Use the right hand rule.
Current (pointer finger) points west (left).
Magnetic field (middle finger) points south (towards you).
Force (thumb) then points up (away from the earth)