Answer:
Copper
Explanation:
Within intermolecular forces, ion-dipole is the strongest, followed by hydrogen bonding, then dipole-dipole, and then London dispersion.
Explanation:
Moles of N2 = 35.0g / (28g/mol) = 1.25mol
Moles of H2 = 60.0g / (2g/mol) = 30.0mol
Since 1.25mol * 3 < 30.0mol, nitrogen is limiting.
Moles of NH3 = 1.25mol * 2 = 2.50mol.
Mass of NH3 = 2.50mol * (17g/mol) = 42.5g.
30.0mol - 1.25mol * 3 = 26.25mol.
Excess mass of H2
= 26.25mol * (2g/mol) = 52.5g.
Answer:
100. mL
Explanation:
Step 1: Write the balanced equation for the double displacement reaction
CaCl₂ + Na₂CO₃ ⇒ 2 NaCl + CaCO₃
Step 2: Calculate the moles corresponding to 1.00 g of CaCO₃
The molar mass of CaCO₃ is 100.09 g/mol.
1.00 g × 1 mol/100.09 g = 0.0100 mol
Step 3: Calculate the moles of CaCl₂ required to produce 0.0100 moles of CaCO₃
The molar ratio of CaCl₂ to CaCO₃ is 1:1. The moles of CaCl₂ required are 1/1 × 0.0100 mol = 0.0100 mol.
Step 4: Calculate the volume of 0.100 M CaCl₂ that contains 0.0100 mol
0.0100 mol × 1 L/0.100 mol × 1000 mL/1 L = 100. mL
Answer:
So the molar mass of a chemical compound is defined as the mass of a sample of that compound is divided by the amount of the substance in that sample measured in the moles.
Answer:
1-ethoxy-2,2-dimethyl-propane
Explanation:
common name
ethyl neopenthyl ether