1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
13

An advantage of the clinical method is that is

Physics
1 answer:
Pavel [41]3 years ago
6 0

Answer:

Little or no control is possible, relationships may be coincidental; cause-and effect relationships cannot be confirmed. Advantages of clinical method: Takes advantage of "natural clinical trials" and allows investigation of rare or unusual problems or events.

Explanation:

You might be interested in
Protons and neutrons in the nucleus are held together by what
True [87]

They are held together because of Strong Nuclear Force.

4 0
3 years ago
How does hydroelectric energy work
lions [1.4K]
<span>The water is held behind a dam, forming reservoir. The force of the water being released from the reservoir through the dam spins the blades of a giant turbine.</span>
6 0
3 years ago
The equation for the speed of a satellite in a circular orbit around the earth depends on mass. Which mass?
katovenus [111]
<h3><u>Question: </u></h3>

The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?

a. The mass of the sun

b. The mass of the satellite

c. The mass of the Earth

<h3><u>Answer:</u></h3>

The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.

Option c

<h3><u> Explanation: </u></h3>

Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence F_{G} = F_{C}.

Gravitational force between Earth and Satellite: F_{G} = \frac{G \times M_e \times M_s}{R^2}

Centripetal force of Satellite :F_C = \frac{M_s \times V^2}{R}

Where G = Gravitational Constant

M_e= Mass of Earth

M_s= Mass of satellite

R= Radius of satellite’s circular orbit

V = Speed of satellite

Equating  F_G = F_C, we get  

Speed of Satellite V =\frac{\sqrt{G \times M_e}}{R}

Thus the speed of satellite depends only on the mass of Earth.

6 0
4 years ago
What length of tube would be required to produce a second tone under the same experimental conditions? Explain your answer.
Alisiya [41]

There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.

<u>Explanation:</u>

The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.

The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.

7 0
4 years ago
Suppose you could fit 100 dimes, end to end, between your card with the pinhole and your dime-sized sunball. how many suns could
Naddika [18.5K]

Answer: 100 suns

Explanation:

We can solve this with the following relation:

\frac{d}{x_{sunball-pinhole}}=\frac{D}{x_{sun-pinhole}}

Where:

d=17.91 mm =17.91(10)^{-3}  m is the diameter of a dime

D is the diameter of the Sun

x_{sun-pinhole}=150,000,000 km=1.5(10)^{11}  m is the distance between the Sun and the pinhole

x_{sunball-pinhole}=100 d=1.791 m is the amount of dimes that fit in a distance between the sunball and the pinhole

Finding D:

D=\frac{d}{x_{sunball-pinhole}}x_{sun-pinhole}

D=\frac{17.91(10)^{-3}  m}{1.791 m} 1.5(10)^{11}  m

D=1.5(10)^{9}  m This is roughly the diameter of the Sun

Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

1 AU=149,597,870,700 m

So, we have to divide this distance between D in order to find how many suns could it fit in this distance:

\frac{149,597,870,700 m}{1.5(10)^{9}  m}=99.73 suns \approx 100 suns

8 0
3 years ago
Other questions:
  • A skydiver falls 3km in 15s. How fast are they going. i need my answer in meters! (20 PTS)
    13·1 answer
  • How can electric energy be converted to heat energy?
    8·1 answer
  • A 7.00 kg mass is being pulled by a 53.8 n force what is the acceleration
    6·1 answer
  • Fast Bullets A rifle with that shoots bullets at 420 m/s shoots a bullet at a target 49.8 m away. How high above the target must
    13·1 answer
  • Answer the following questions based on the
    15·2 answers
  • A series RL circuit contains two resistors and two inductors. The resistors are 33 Ω and 47 Ω. The inductors have inductive reac
    11·1 answer
  • A car has a mass of 2,000 kg and is traveling at 28m/s. What is the car’s kinetic energy?
    10·1 answer
  • Why is the fuse used in a circuit called safety fuse?<br>​
    5·2 answers
  • Which two changes would decrease the electric force between two charged
    15·1 answer
  • You can switch the polarity of the bar magnet by clicking on the button with the bar magnet and two semi-circular arrows on the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!