The answer to this item depends entirely to the chemical reaction. If the compound, NH4Cl, is in the left hand side of the reaction, when it is added, the reaction will shift to the left. In the same manner, when the compound is in the right-hand side of the reaction, the reaction will shift to the right.
This happens because initially the reaction is in equilibrium and adding another compound to it will most likely lead to the shifting of the reaction.
Answer:

Explanation:
Hello,
In this case, the reaction is given as:

Thus, starting by the yielded grams of silver iodide, we obtain:

Which correspond to the iodide grams in the silver iodide. In such a way, by means of the law of the conservation of mass, it is known that the grams of each atom MUST remain constant before and after the chemical reaction whereas the moles do not, therefore, the mass of iodine from the silver iodide will equal the mass of iodine present in the soluble iodide, thereby:

And the rest, correspond to the iodide's metallic cation which is unknown. Such value has sense since it is lower than the initial mass of the soluble iodide which is 1.454g, so 0.272 grams correspond to the unknown cation.
Best regards.
Explanation:
What type of graph is most appropriate to present the data in Table 4? Create a graph of the data in Excel or another graphing software and submit it to your instructor.
Develop a detailed hypothesis for your experiment.What would your experimental approach be to test this hypothesis? Be detailed in your description of the experiment.
6.What are the independent, dependent, and controlled variables in your experiment?
What type of graph would be appropriate for this data set? Why?
Answer:
They have fewer hydrogen atoms attached to the carbon chain than alkanes
Explanation:
Let's compare ethane (an alkane) with ethene (an alkene) and ethyne (an alkyne):
- Ethane's formula is C₂H₄, while ethene's is C₂H₄ and ethyne's C₂H₂.
As you can see, alkenes and alkynes have fewer hydrogen atoms attached to the carbon chain due to them having multiple bonds between the carbon atoms.