Answer:

Explanation:
The formula for kinetic energy is:

We can plug in the given values into the equation:



Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
In Electrostatics the electrical force between Two charged objects is inversely Related to the distance of separation between the two objects .
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
Answer:
1.23 m
Explanation:
The vertical distance covered by a free-falling object starting from rest in a time t is

where
g = 9.8 m/s^2 is the acceleration due to gravity
In this problem, we have
t = 0.50 s
So the distance covered is
