The answer is electromagnetic induction :) ask me if you need any more help.
Answer:
The capacitor having less distance of separation has a stronger electric field.
Explanation:
The capacitors are identical and only difference between them is that one has twice the plate separation of the other. Therefore, capacitance of the given capacitors C1 and C2 is,
C1= Aε/d and C2=Aε/2d
The charges Q1 and Q2 on the capacitors of capacitance C1 and C2 respectively, is then given by the equation,
Q1=VC1
Q1=VAε/d
Q2=VC2
Q2=VAε/2d
Therefore, the surface charge density σ1 and σ2 for the capacitors is,
σ1=Q1/A
σ1=VAε/(d*A)
σ1=Vε/d
Similarly,
σ2=Q2/A
σ2=Vε/2d
The electric field between the plates is directly proportional to the surface charge density. And so electric field is inversely proportional to the distance of separation. Therefore the capacitor whose distance of separation is less has a stronger electric field.
Check out similar questions.
brainly.com/question/14744776
#SPJ10
Answer:
Explanation:
In electric circuit , the potential difference is always developed across the resistance .
Now is we are to amplify the voltage , that means low input voltage is converted into high voltage output .
Therefore we require low resistance at input for low voltage and high out put resistance for high output
Thus the statement given is wrong .
Other than for the chemical symbol, the electron dot diagram for silicon would be the same as it was for carbon.
The reason for this is because electron dot diagrams are used to represent the electrons in the outermost, or valence, shell of an atom. In a group of the periodic table, all of the elements have the same number of valence shell electrons. This means that all elements belonging to the same group have the same electron dot diagram, except for the symbol of the element that is within the diagram.