The gravitational force between the objects A. It would increase.
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, we are told that one of the object (the one on the right) gains mass: this means that, for instance, the value of increases. We can see from the equation that the gravitational force is directly proportional to the masses: therefore, if one of the masses increases (while the distance between the two objects remains constant), it means that the force also increases.
Therefore, the correct answer is
A. It would increase.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
If the length of the wire increases, then the amount of resistance will also increase.
1. Take a long piece of wire and cut it 10 pieces. Those pieces should all be different sizes, one should be 5___ (units in meter, cm, inches, etc.), and the next should be 5 ___ (units in meter, cm, inches, etc.) more than the one before.
2. Take one piece of wire and measure the resistance using ___ and record the results in the data table.
3. Repeat the previous step with all the pieces of wire.
4. Compare and contrast the results you have found.
I hope this helps a bit :)
Most clouds form in the atmosphere when moist air rises expands and cool to the dew point. When the air above reaches its saturation point, the water vapor is attracted to dust particles which when they accumulate the hold on tho each other and form clouds. Evaporation and condensation is what causes saturation above. When the clouds become heavy enough with moisture, the water then fall to earth as rain. <span />
Answer:
a)
125.6 rad/s
b)
25.12 rad/s²
Explanation:
a)
t = time required by the fan to get up to final operating speed = 5 sec
w = final operating rotational speed = 1200 rpm
we know that :
1 revolution = 2π rad
1 min = 60 sec
w =
w =
w = 125.6 rad/s
b)
w₀ = initial angular speed = 0 rad/s
α = angular acceleration
using the equation
w = w₀ + α t
125.6 = 0 + α (5)
α = 25.12 rad/s²
Answer:
0.686 g of ice melts each second.
Solution:
As per the question:
Cross-sectional Area of the Copper Rod, A =
Length of the rod, L = 19.6 cm = 0.196 m
Thermal conductivity of Copper, K =
Conduction of heat from the rod per second is given by:
where
= temperature difference between the two ends of the rod.
Thus
Now,
To calculate the mass, M of the ice melted per sec:
where
= Latent heat of fusion of water = 333 kJ/kg