A molecule with two strong bond dipoles can have no molecular dipole if the bond dipoles cancel each other out by pointing in exactly opposite directions. For example, in carbon dioxide (a linear molecule), the carbon-oxygen bonds have a <span>large dipole moment. However, because one dipole points to the left and the other to the right the dipole is cancelled.</span>
This means a release of free energy from the system corresponds to a negative change in free energy, but to a positive change for the surroundings.
Answer:
The answer is (e) : phosphoglucomutase, UDP-glucose pyrophosphorylase, glycogen synthase then amylo-(1,4-1,6)-transglycosylase.
Explanation:
Phosphoglucomutase: Convert glucose-6-phosphate to glucose-1-phosphate.
UDP-glucose pyrophosphorylase: Form UDP-glucose from glucose-1-phosphate.
Glycogen synthase: Add the new glucose from UDP-glucose to the growing glycogen chain.
Amylo-(1,4-1,6)-transglycosylase: This is a branching enzyme, it initiates formation of branches evolving from the main chain.