Explanation:
The pure form of water has a boiling point of 100°C. Boiling point is a physical property of matter and it shows that at such temperature, a liquid substance will change state to vapor.
Pure water is made up of 2 atoms of hydrogen and 1 atom of oxygen. The only intermolecular forces between them is the hydrogen bonds that must be broken for the water to boiling off.
In hydrate, water is present in another form. The water is attached to another compound.
For a pure liquid, the they have reasonably constant boiling point and low boiling range.
Impurities such as the other part of the hydrate causes the elevation of the boiling point and the widening of the boiling range for impure substances.
We are no longer dealing with just hydrogen bonds, other molecular interactions are now involved and they need to be accounted for.
learn more:
Pure substances brainly.com/question/1832352
#learnwithBrainly
Answer:
b. HCOOH/ NaHCOO.
Explanation:
A buffer system may be formed in one of two forms:
- A weak acid with its conjugate base.
- A weak base with its conjugate acid.
Chose the pairs below that you could use to make a buffered solution.
a. HCI/NaOH. NO. HCl is a strong acid and NaOH is a strong base.
b. HCOOH/ NaHCOO. YES. HCOOH is a weak acid and HCOO⁻ (coming from NaHCOO) is its conjugate base.
c. HNO₂/H₂SO₃. NO. Both are acids and they are unrelated to each other.
d. NaNO₃/ HNO₃. NO. HNO₃ is a strong acid.
a compound in chemistry, is any substance that is formed when two or more chemical elements are chemically bonded together. A prime example of this is H20. You are combining hydrogen to oxygen, giving you a compund element. I hope this helps you. :)
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.